@article{MolinnusHardtSiegertetal.2018, author = {Molinnus, Denise and Hardt, Gabriel and Siegert, Petra and Willenberg, Holger S. and Poghossian, Arshak and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Detection of Adrenaline in Blood Plasma as Biomarker for Adrenal Venous Sampling}, series = {Electroanalysis}, volume = {30}, journal = {Electroanalysis}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-4109}, doi = {10.1002/elan.201800026}, pages = {937 -- 942}, year = {2018}, abstract = {An amperometric bi-enzyme biosensor based on substrate recycling principle for the amplification of the sensor signal has been developed for the detection of adrenaline in blood. Adrenaline can be used as biomarker verifying successful adrenal venous sampling procedure. The adrenaline biosensor has been realized via modification of a galvanic oxygen sensor with a bi-enzyme membrane combining a genetically modified laccase and a pyrroloquinoline quinone-dependent glucose dehydrogenase. The measurement conditions such as pH value and temperature were optimized to enhance the sensor performance. A high sensitivity and a low detection limit of about 0.5-1 nM adrenaline have been achieved in phosphate buffer at pH 7.4, relevant for measurements in blood samples. The sensitivity of the biosensor to other catecholamines such as noradrenaline, dopamine and dobutamine has been studied. Finally, the sensor has been successfully applied for the detection of adrenaline in human blood plasma.}, language = {en} } @article{OberlaenderMayerGreeffetal.2018, author = {Oberl{\"a}nder, Jan and Mayer, Marlena and Greeff, Anton and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Spore-based biosensor to monitor the microbicidal efficacy of gaseous hydrogen peroxide sterilization processes}, series = {Biosensors and Bioelectronics}, volume = {104}, journal = {Biosensors and Bioelectronics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0956-5663}, doi = {10.1016/j.bios.2017.12.045}, pages = {87 -- 94}, year = {2018}, abstract = {In this work, a spore-based biosensor is evaluated to monitor the microbicidal efficacy of sterilization processes applying gaseous hydrogen peroxide (H2O2). The sensor is based on interdigitated electrode structures (IDEs) that have been fabricated by means of thin-film technologies. Impedimetric measurements are applied to study the effect of sterilization process on spores of Bacillus atrophaeus. This resilient microorganism is commonly used in industry to proof the sterilization efficiency. The sensor measurements are accompanied by conventional microbiological challenge tests, as well as morphological characterizations with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The sensor measurements are correlated with the microbiological test routines. In both methods, namely the sensor-based and microbiological one, a tailing effect has been observed. The results are evaluated and discussed in a three-dimensional calibration plot demonstrating the sensor's suitability to enable a rapid process decision in terms of a successfully performed sterilization.}, language = {en} } @article{MolinnusMuschallikGonzalezetal.2018, author = {Molinnus, Denise and Muschallik, Lukas and Gonzalez, Laura Osorio and Bongaerts, Johannes and Wagner, Torsten and Selmer, Thorsten and Siegert, Petra and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Development and characterization of a field-effect biosensor for the detection of acetoin}, series = {Biosensors and Bioelectronics}, volume = {115}, journal = {Biosensors and Bioelectronics}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.bios.2018.05.023}, pages = {1 -- 6}, year = {2018}, abstract = {A capacitive electrolyte-insulator-semiconductor (EIS) field-effect biosensor for acetoin detection has been presented for the first time. The EIS sensor consists of a layer structure of Al/p-Si/SiO₂/Ta₂O₅/enzyme acetoin reductase. The enzyme, also referred to as butane-2,3-diol dehydrogenase from B. clausii DSM 8716T, has been recently characterized. The enzyme catalyzes the (R)-specific reduction of racemic acetoin to (R,R)- and meso-butane-2,3-diol, respectively. Two different enzyme immobilization strategies (cross-linking by using glutaraldehyde and adsorption) have been studied. Typical biosensor parameters such as optimal pH working range, sensitivity, hysteresis, linear concentration range and long-term stability have been examined by means of constant-capacitance (ConCap) mode measurements. Furthermore, preliminary experiments have been successfully carried out for the detection of acetoin in diluted white wine samples.}, language = {en} } @article{MolinnusHardtKaeveretal.2018, author = {Molinnus, Denise and Hardt, G. and K{\"a}ver, L. and Willenberg, H.S. and Kr{\"o}ger, J.-C. and Poghossian, Arshak and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Chip-based biosensor for the detection of low adrenaline concentrations to support adrenal venous sampling}, series = {Sensor and Actuators B: Chemical}, volume = {272}, journal = {Sensor and Actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2018.05.136}, pages = {21 -- 27}, year = {2018}, abstract = {A chip-based amperometric biosensor referring on using the bioelectrocatalytical amplification principle for the detection of low adrenaline concentrations is presented. The adrenaline biosensor has been prepared by modification of a platinum thin-film electrode with an enzyme membrane containing the pyrroloquinoline quinone-dependent glucose dehydrogenase and glutaraldehyde. Measuring conditions such as temperature, pH value, and glucose concentration have been optimized to achieve a high sensitivity and a low detection limit of about 1 nM adrenaline measured in phosphate buffer at neutral pH value. The response of the biosensor to different catecholamines has also been proven. Long-term stability of the adrenaline biosensor has been studied over 10 days. In addition, the biosensor has been successfully applied for adrenaline detection in human blood plasma for future biomedical applications. Furthermore, preliminary experiments have been carried to detect the adrenaline-concentration difference measured in peripheral blood and adrenal venous blood, representing the adrenal vein sampling procedure of a physician.}, language = {en} } @article{BronderJessingPoghossianetal.2018, author = {Bronder, Thomas and Jessing, Max P. and Poghossian, Arshak and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Detection of PCR-Amplified Tuberculosis DNA Fragments with Polyelectrolyte-Modified Field-Effect Sensors}, series = {Analytical Chemistry}, volume = {90}, journal = {Analytical Chemistry}, number = {12}, publisher = {ACS Publications}, address = {Washington, DC}, issn = {0003-2700}, doi = {10.1021/acs.analchem.8b01807}, pages = {7747 -- 7753}, year = {2018}, abstract = {Field-effect-based electrolyte-insulator-semiconductor (EIS) sensors were modified with a bilayer of positively charged weak polyelectrolyte (poly(allylamine hydrochloride) (PAH)) and probe single-stranded DNA (ssDNA) and are used for the detection of complementary single-stranded target DNA (cDNA) in different test solutions. The sensing mechanism is based on the detection of the intrinsic molecular charge of target cDNA molecules after the hybridization event between cDNA and immobilized probe ssDNA. The test solutions contain synthetic cDNA oligonucleotides (with a sequence of tuberculosis mycobacteria genome) or PCR-amplified DNA (which origins from a template DNA strand that has been extracted from Mycobacterium avium paratuberculosis-spiked human sputum samples), respectively. Sensor responses up to 41 mV have been measured for the test solutions with DNA, while only small signals of ∼5 mV were detected for solutions without DNA. The lower detection limit of the EIS sensors was ∼0.3 nM, and the sensitivity was ∼7.2 mV/decade. Fluorescence experiments using SybrGreen I fluorescence dye support the electrochemical results.}, language = {en} } @article{JildehOberlaenderKirchneretal.2018, author = {Jildeh, Zaid B. and Oberl{\"a}nder, Jan and Kirchner, Patrick and Keusgen, Michael and Wagner, Patrick H. and Sch{\"o}ning, Michael Josef}, title = {Experimental and Numerical Analyzes of a Sensor Based on Interdigitated Electrodes for Studying Microbiological Alterations}, series = {physica status solidi (a): applications and materials science}, volume = {215}, journal = {physica status solidi (a): applications and materials science}, number = {15}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201700920}, pages = {Artikel 1700920}, year = {2018}, abstract = {In this work, a cell-based biosensor to evaluate the sterilization efficacy of hydrogen peroxide vapor sterilization processes is characterized. The transducer of the biosensor is based on interdigitated gold electrodes fabricated on an inert glass substrate. Impedance spectroscopy is applied to evaluate the sensor behavior and the alteration of test microorganisms due to the sterilization process. These alterations are related to changes in relative permittivity and electrical conductivity of the bacterial spores. Sensor measurements are conducted with and without bacterial spores (Bacillus atrophaeus), as well as after an industrial sterilization protocol. Equivalent two-dimensional numerical models based on finite element method of the periodic finger structures of the interdigitated gold electrodes are designed and validated using COMSOL® Multiphysics software by the application of known dielectric properties. The validated models are used to compute the electrical properties at different sensor states (blank, loaded with spores, and after sterilization). As a final result, we will derive and tabulate the frequency-dependent electrical parameters of the spore layer using a novel model that combines experimental data with numerical optimization techniques.}, language = {en} } @article{RoehlenPilasDahmenetal.2018, author = {R{\"o}hlen, Desiree and Pilas, Johanna and Dahmen, Markus and Keusgen, Michael and Selmer, Thorsten and Sch{\"o}ning, Michael Josef}, title = {Toward a Hybrid Biosensor System for Analysis of Organic and Volatile Fatty Acids in Fermentation Processes}, series = {Frontiers in Chemistry}, journal = {Frontiers in Chemistry}, number = {6}, publisher = {Frontiers}, address = {Lausanne}, doi = {10.3389/fchem.2018.00284}, pages = {Artikel 284}, year = {2018}, abstract = {Monitoring of organic acids (OA) and volatile fatty acids (VFA) is crucial for the control of anaerobic digestion. In case of unstable process conditions, an accumulation of these intermediates occurs. In the present work, two different enzyme-based biosensor arrays are combined and presented for facile electrochemical determination of several process-relevant analytes. Each biosensor utilizes a platinum sensor chip (14 × 14 mm²) with five individual working electrodes. The OA biosensor enables simultaneous measurement of ethanol, formate, d- and l-lactate, based on a bi-enzymatic detection principle. The second VFA biosensor provides an amperometric platform for quantification of acetate and propionate, mediated by oxidation of hydrogen peroxide. The cross-sensitivity of both biosensors toward potential interferents, typically present in fermentation samples, was investigated. The potential for practical application in complex media was successfully demonstrated in spiked sludge samples collected from three different biogas plants. Thereby, the results obtained by both of the biosensors were in good agreement to the applied reference measurements by photometry and gas chromatography, respectively. The proposed hybrid biosensor system was also used for long-term monitoring of a lab-scale biogas reactor (0.01 m³) for a period of 2 months. In combination with typically monitored parameters, such as gas quality, pH and FOS/TAC (volatile organic acids/total anorganic carbonate), the amperometric measurements of OA and VFA concentration could enhance the understanding of ongoing fermentation processes.}, language = {en} } @article{ArreolaKeusgenSchoening2019, author = {Arreola, Julio and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Toward an immobilization method for spore-based biosensors in oxidative environment}, series = {Electrochimica Acta}, volume = {302}, journal = {Electrochimica Acta}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.electacta.2019.01.148}, pages = {394 -- 401}, year = {2019}, language = {en} } @article{BronderPoghossianJessingetal.2019, author = {Bronder, Thomas and Poghossian, Arshak and Jessing, Max P. and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Surface regeneration and reusability of label-free DNA biosensors based on weak polyelectrolyte-modified capacitive field-effect structures}, series = {Biosensors and Bioelectronics}, volume = {126}, journal = {Biosensors and Bioelectronics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0956-5663}, doi = {10.1016/j.bios.2018.11.019}, pages = {510 -- 517}, year = {2019}, language = {en} } @article{CornelisGivanoudiYongabietal.2019, author = {Cornelis, Peter and Givanoudi, Stella and Yongabi, Derick and Iken, Heiko and Duw{\´e}, Sam and Deschaume, Olivier and Robbens, Johan and Dedecker, Peter and Bartic, Carmen and W{\"u}bbenhorst, Michael and Sch{\"o}ning, Michael Josef and Heyndrickx, Marc and Wagner, Patrick}, title = {Sensitive and specific detection of E. coli using biomimetic receptors in combination with a modified heat-transfer method}, series = {Biosensors and Bioelectronics}, volume = {136}, journal = {Biosensors and Bioelectronics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0956-5663}, doi = {10.1016/j.bios.2019.04.026}, pages = {97 -- 105}, year = {2019}, language = {en} } @article{ArreolaKeusgenWagneretal.2019, author = {Arreola, Julio and Keusgen, Michael and Wagner, Torsten and Sch{\"o}ning, Michael Josef}, title = {Combined calorimetric gas- and spore-based biosensor array for online monitoring and sterility assurance of gaseous hydrogen peroxide in aseptic filling machines}, series = {Biosensors and Bioelectronics}, volume = {143}, journal = {Biosensors and Bioelectronics}, number = {111628}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0956-5663}, doi = {10.1016/j.bios.2019.111628}, year = {2019}, language = {en} } @inproceedings{WeldenSeverinsPoghossianetal.2022, author = {Welden, Melanie and Severins, Robin and Poghossian, Arshak and Wege, Christina and Siegert, Petra and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Studying the immobilization of acetoin reductase with Tobacco mosaic virus particles on capacitive field-effect sensors}, series = {2022 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN)}, booktitle = {2022 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN)}, publisher = {IEEE}, isbn = {978-1-6654-5860-3 (Online)}, doi = {10.1109/ISOEN54820.2022.9789657}, pages = {4 Seiten}, year = {2022}, abstract = {A capacitive electrolyte-insulator-semiconductor (EISCAP) biosensor modified with Tobacco mosaic virus (TMV) particles for the detection of acetoin is presented. The enzyme acetoin reductase (AR) was immobilized on the surface of the EISCAP using TMV particles as nanoscaffolds. The study focused on the optimization of the TMV-assisted AR immobilization on the Ta 2 O 5 -gate EISCAP surface. The TMV-assisted acetoin EISCAPs were electrochemically characterized by means of leakage-current, capacitance-voltage, and constant-capacitance measurements. The TMV-modified transducer surface was studied via scanning electron microscopy.}, language = {en} } @article{SchoeningBronderWuetal.2017, author = {Sch{\"o}ning, Michael Josef and Bronder, Thomas and Wu, Chunsheng and Scheja, Sabrina and Jessing, Max and Metzger-Boddien, Christoph and Keusgen, Michael and Poghossian, Arshak}, title = {Label-Free DNA Detection with Capacitive Field-Effect Devices—Challenges and Opportunities}, series = {Proceedings}, volume = {1}, journal = {Proceedings}, number = {8}, publisher = {MDPI}, address = {Basel}, issn = {2504-3900}, doi = {10.3390/proceedings1080719}, pages = {Artikel 719}, year = {2017}, abstract = {Field-effect EIS (electrolyte-insulator-semiconductor) sensors modified with a positively charged weak polyelectrolyte layer have been applied for the electrical detection of DNA (deoxyribonucleic acid) immobilization and hybridization by the intrinsic molecular charge. The EIS sensors are able to detect the existence of target DNA amplicons in PCR (polymerase chain reaction) samples and thus, can be used as tool for a quick verification of DNA amplification and the successful PCR process. Due to their miniaturized setup, compatibility with advanced micro- and nanotechnologies, and ability to detect biomolecules by their intrinsic molecular charge, those sensors can serve as possible platform for the development of label-free DNA chips. Possible application fields as well as challenges and limitations will be discussed.}, language = {en} } @article{MolinnusJanusFangetal.2022, author = {Molinnus, Denise and Janus, Kevin Alexander and Fang, Anyelina C. and Drinic, Aleksander and Achtsnicht, Stefan and K{\"o}pf, Marius and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Thick-film carbon electrode deposited onto a biodegradable fibroin substrate for biosensing applications}, series = {Physica status solidi (a)}, volume = {219}, journal = {Physica status solidi (a)}, number = {23}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.202200100}, pages = {1 -- 9}, year = {2022}, abstract = {This study addresses a proof-of-concept experiment with a biocompatible screen-printed carbon electrode deposited onto a biocompatible and biodegradable substrate, which is made of fibroin, a protein derived from silk of the Bombyx mori silkworm. To demonstrate the sensor performance, the carbon electrode is functionalized as a glucose biosensor with the enzyme glucose oxidase and encapsulated with a silicone rubber to ensure biocompatibility of the contact wires. The carbon electrode is fabricated by means of thick-film technology including a curing step to solidify the carbon paste. The influence of the curing temperature and curing time on the electrode morphology is analyzed via scanning electron microscopy. The electrochemical characterization of the glucose biosensor is performed by amperometric/voltammetric measurements of different glucose concentrations in phosphate buffer. Herein, systematic studies at applied potentials from 500 to 1200 mV to the carbon working electrode (vs the Ag/AgCl reference electrode) allow to determine the optimal working potential. Additionally, the influence of the curing parameters on the glucose sensitivity is examined over a time period of up to 361 days. The sensor shows a negligible cross-sensitivity toward ascorbic acid, noradrenaline, and adrenaline. The developed biocompatible biosensor is highly promising for future in vivo and epidermal applications.}, language = {en} } @article{KirchnerOberlaenderSusoetal.2013, author = {Kirchner, Patrick and Oberl{\"a}nder, Jan and Suso, Henri-Pierre and Rysstad, Gunnar and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Towards a wireless sensor system for real-time H2O2 monitoring in aseptic food processes}, series = {Physica status solidi (a)}, volume = {210}, journal = {Physica status solidi (a)}, number = {5}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201200920}, pages = {877 -- 883}, year = {2013}, abstract = {A wireless sensor system based on the industrial ZigBee standard for low-rate wireless networking was developed that enables real-time monitoring of gaseous H2O2 during the package sterilization in aseptic food processes. The sensor system consists of a remote unit connected to a calorimetric gas sensor, which was already established in former works, and an external base unit connected to a laptop computer. The remote unit was built up by an XBee radio frequency (RF) module for data communication and a programmable system-on-chip controller to read out the sensor signal and process the sensor data, whereas the base unit is a second XBee RF module. For the rapid H2O2 detection on various locations inside the package that has to be sterilized, a novel read-out strategy of the calorimetric gas sensor was established, wherein the sensor response is measured within the short sterilization time and correlated with the present H2O2 concentration. In an exemplary measurement application in an aseptic filling machinery, the suitability of the new, wireless sensor system was demonstrated, wherein the influence of the gas velocity on the H2O2 distribution inside a package was determined and verified with microbiological tests.}, language = {en} } @article{WernerWagnerYoshinobuetal.2013, author = {Werner, Frederik and Wagner, Torsten and Yoshinobu, Tatsuo and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Frequency behaviour of light-addressable potentiometric sensors}, series = {Physica Status Solidi (A)}, volume = {210}, journal = {Physica Status Solidi (A)}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-396X ; 0031-8965}, doi = {10.1002/pssa.201200929}, pages = {884 -- 891}, year = {2013}, abstract = {Light-addressable potentiometric sensors (LAPS) are semiconductor-based potentiometric sensors, with the advantage to detect the concentration of a chemical species in a liquid solution above the sensor surface in a spatially resolved manner. The addressing is achieved by a modulated and focused light source illuminating the semiconductor and generating a concentration-depending photocurrent. This work introduces a LAPS set-up that is able to monitor the electrical impedance in addition to the photocurrent. The impedance spectra of a LAPS structure, with and without illumination, as well as the frequency behaviour of the LAPS measurement are investigated. The measurements are supported by electrical equivalent circuits to explain the impedance and the LAPS-frequency behaviour. The work investigates the influence of different parameters on the frequency behaviour of the LAPS. Furthermore, the phase shift of the photocurrent, the influence of the surface potential as well as the changes of the sensor impedance will be discussed.}, language = {en} } @article{PilasSelmerKeusgenetal.2019, author = {Pilas, Johanna and Selmer, Thorsten and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Screen-printed carbon electrodes modified with graphene oxide for the design of a reagent-free NAD+-dependent biosensor array}, series = {Analytical Chemistry}, volume = {91}, journal = {Analytical Chemistry}, number = {23}, publisher = {ACS Publications}, address = {Washington}, doi = {10.1021/acs.analchem.9b04481}, pages = {15293 -- 15299}, year = {2019}, language = {en} } @article{WertIkenSchoeningetal.2021, author = {Wert, Stefan and Iken, Heiko and Sch{\"o}ning, Michael Josef and Matysik, Frank-Michael}, title = {Development of a temperature-pulse enhanced electrochemical glucose biosensor and characterization of its stability via scanning electrochemical microscopy}, series = {Electroanalysis}, journal = {Electroanalysis}, number = {Early View}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-4109}, doi = {10.1002/elan.202100089}, year = {2021}, abstract = {Glucose oxidase (GOx) is an enzyme frequently used in glucose biosensors. As increased temperatures can enhance the performance of electrochemical sensors, we investigated the impact of temperature pulses on GOx that was drop-coated on flattened Pt microwires. The wires were heated by an alternating current. The sensitivity towards glucose and the temperature stability of GOx was investigated by amperometry. An up to 22-fold increase of sensitivity was observed. Spatially resolved enzyme activity changes were investigated via scanning electrochemical microscopy. The application of short (<100 ms) heat pulses was associated with less thermal inactivation of the immobilized GOx than long-term heating.}, language = {en} } @article{JablonskiMuenstermannNorketal.2021, author = {Jablonski, Melanie and M{\"u}nstermann, Felix and Nork, Jasmina and Molinnus, Denise and Muschallik, Lukas and Bongaerts, Johannes and Wagner, Torsten and Keusgen, Michael and Siegert, Petra and Sch{\"o}ning, Michael Josef}, title = {Capacitive field-effect biosensor applied for the detection of acetoin in alcoholic beverages and fermentation broths}, series = {physica status solidi (a) applications and materials science}, volume = {218}, journal = {physica status solidi (a) applications and materials science}, number = {13}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.202000765}, pages = {7 Seiten}, year = {2021}, abstract = {An acetoin biosensor based on a capacitive electrolyte-insulator-semiconductor (EIS) structure modified with the enzyme acetoin reductase, also known as butane-2,3-diol dehydrogenase (Bacillus clausii DSM 8716ᵀ), is applied for acetoin detection in beer, red wine, and fermentation broth samples for the first time. The EIS sensor consists of an Al/p-Si/SiO₂/Ta₂O₅ layer structure with immobilized acetoin reductase on top of the Ta₂O₅ transducer layer by means of crosslinking via glutaraldehyde. The unmodified and enzyme-modified sensors are electrochemically characterized by means of leakage current, capacitance-voltage, and constant capacitance methods, respectively.}, language = {en} } @article{JablonskiPoghossianSeverinetal.2021, author = {Jablonski, Melanie and Poghossian, Arshak and Severin, Robin and Keusgen, Michael and Wege, Christian and Sch{\"o}ning, Michael Josef}, title = {Capacitive Field-Effect Biosensor Studying Adsorption of Tobacco Mosaic Virus Particles}, series = {Micromachines}, volume = {12}, journal = {Micromachines}, number = {1}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/mi12010057}, pages = {Artikel 57}, year = {2021}, abstract = {Plant virus-like particles, and in particular, tobacco mosaic virus (TMV) particles, are increasingly being used in nano- and biotechnology as well as for biochemical sensing purposes as nanoscaffolds for the high-density immobilization of receptor molecules. The sensitive parameters of TMV-assisted biosensors depend, among others, on the density of adsorbed TMV particles on the sensor surface, which is affected by both the adsorption conditions and surface properties of the sensor. In this work, Ta₂O₅-gate field-effect capacitive sensors have been applied for the label-free electrical detection of TMV adsorption. The impact of the TMV concentration on both the sensor signal and the density of TMV particles adsorbed onto the Ta₂O₅-gate surface has been studied systematically by means of field-effect and scanning electron microscopy methods. In addition, the surface density of TMV particles loaded under different incubation times has been investigated. Finally, the field-effect sensor also demonstrates the label-free detection of penicillinase immobilization as model bioreceptor on TMV particles.}, language = {en} } @article{JablonskiPoghossianKeusgenetal.2021, author = {Jablonski, Melanie and Poghossian, Arshak and Keusgen, Michael and Wege, Christina and Sch{\"o}ning, Michael Josef}, title = {Detection of plant virus particles with a capacitive field-effect sensor}, series = {Analytical and Bioanalytical Chemistry}, volume = {413}, journal = {Analytical and Bioanalytical Chemistry}, publisher = {Springer Nature}, address = {Cham}, issn = {1618-2650}, doi = {10.1007/s00216-021-03448-8}, pages = {5669 -- 5678}, year = {2021}, abstract = {Plant viruses are major contributors to crop losses and induce high economic costs worldwide. For reliable, on-site and early detection of plant viral diseases, portable biosensors are of great interest. In this study, a field-effect SiO2-gate electrolyte-insulator-semiconductor (EIS) sensor was utilized for the label-free electrostatic detection of tobacco mosaic virus (TMV) particles as a model plant pathogen. The capacitive EIS sensor has been characterized regarding its TMV sensitivity by means of constant-capacitance method. The EIS sensor was able to detect biotinylated TMV particles from a solution with a TMV concentration as low as 0.025 nM. A good correlation between the registered EIS sensor signal and the density of adsorbed TMV particles assessed from scanning electron microscopy images of the SiO2-gate chip surface was observed. Additionally, the isoelectric point of the biotinylated TMV particles was determined via zeta potential measurements and the influence of ionic strength of the measurement solution on the TMV-modified EIS sensor signal has been studied.}, language = {en} } @article{JanusAchtsnichtTempeletal.2023, author = {Janus, Kevin Alexander and Achtsnicht, Stefan and Tempel, Laura and Drinic, Aleksaner and Kopp, Alexander and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Influence of fibroin membrane composition and curing parameters on the performance of a biodegradable enzymatic biosensor manufactured from Silicon-Free Carbon}, series = {Physica status solidi : pss. A, Applications and materials science}, volume = {220}, journal = {Physica status solidi : pss. A, Applications and materials science}, number = {22}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6300 (Print)}, doi = {10.1002/pssa.202300081}, pages = {Artikel 2300081}, year = {2023}, abstract = {Herein, fibroin, polylactide (PLA), and carbon are investigated for their suitability as biocompatible and biodegradable materials for amperometric biosensors. For this purpose, screen-printed carbon electrodes on the biodegradable substrates fibroin and PLA are modified with a glucose oxidase membrane and then encapsulated with the biocompatible material Ecoflex. The influence of different curing parameters of the carbon electrodes on the resulting biosensor characteristics is studied. The morphology of the electrodes is investigated by scanning electron microscopy, and the biosensor performance is examined by amperometric measurements of glucose (0.5-10 mM) in phosphate buffer solution, pH 7.4, at an applied potential of 1.2 V versus a Ag/AgCl reference electrode. Instead of Ecoflex, fibroin, PLA, and wound adhesive are tested as alternative encapsulation compounds: a series of swelling tests with different fibroin compositions, PLA, and Ecoflex has been performed before characterizing the most promising candidates by chronoamperometry. Therefore, the carbon electrodes are completely covered with the particular encapsulation material. Chronoamperometric measurements with H2O2 concentrations between 0.5 and 10 mM enable studying the leakage current behavior.}, language = {en} } @article{JanusAchtsnichtDrinicetal.2023, author = {Janus, Kevin Alexander and Achtsnicht, Stefan and Drinic, Aleksander and Kopp, Alexander and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Transient magnesium-based thin-film temperature sensor on a flexible, bioabsorbable substrate for future medical applications}, series = {Applied Research}, journal = {Applied Research}, number = {Accepted manuscript}, publisher = {Wiley-VCH}, issn = {2702-4288 (Print)}, doi = {10.1002/appl.202300102}, pages = {22 Seiten}, year = {2023}, abstract = {In this work, the bioabsorbable materials, namely fibroin, polylactide acid (PLA), magnesium and magnesium oxide are investigated for their application as transient, resistive temperature detectors (RTD). For this purpose, a thin-film magnesium-based meander-like electrode is deposited onto a flexible, bioabsorbable substrate (fibroin or PLA) and encapsulated (passivated) by additional magnesium oxide layers on top and below the magnesium-based electrode. The morphology of different layered RTDs is analyzed by scanning electron microscopy. The sensor performance and lifetime of the RTD is characterized both under ambient atmospheric conditions between 30°C and 43°C, and wet tissue-like conditions with a constant temperature regime of 37°C. The latter triggers the degradation process of the magnesium-based layers. The 3-layers RTDs on a PLA substrate could achieve a lifetime of 8.5 h. These sensors also show the best sensor performance under ambient atmospheric conditions with a mean sensitivity of 0.48 Ω/°C ± 0.01 Ω/°C.}, language = {en} } @inproceedings{SchoeningAbdelghani2009, author = {Sch{\"o}ning, Michael Josef and Abdelghani, Adnane}, title = {Advancements in Nanotechnology and Microelectronics (ANM '09) <2009, Tunisia>: Proceedings book ; Tunisia, November, 13 \& 14, 2009 / Humboldt Kolleg. Ed. by Michael J. Sch{\"o}ning ; Adnane Abdelghani}, organization = {Humboldt-Kolleg Advancements in Nanotechnology and Microelectronics (ANM '09) <2009, Tunisia>}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:a96-opus-3113}, year = {2009}, abstract = {The ANM'09 multi-disciplinary scientific program includes topics in the fields of "Nanotechnology and Microelectronics" ranging from "Bio/Micro/Nano Materials and Interfacing" aspects, "Chemical and Bio-Sensors", "Magnetic and Superconducting Devices", "MEMS and Microfluidics" over "Theoretical Aspects, Methods and Modelling" up to the important bridging "Academics meet Industry".}, subject = {Nanopartikel}, language = {en} } @inproceedings{SchoeningAbdelghani2012, author = {Sch{\"o}ning, Michael Josef and Abdelghani, Adnane}, title = {Nanoscale Science and Technology (NS\&T'12) : Proceedings Book Humboldt Kolleg <2012, Tunisia> ; Tunisia, 17-19 March, 2012 / ed. by Michael J. Sch{\"o}ning ; Adnane Abdelghani}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:a96-opus-3544}, year = {2012}, abstract = {Proceedings of the 2nd Humboldt Kolleg, Hammamet, Tunisia Organizer: Alexander von Humboldt Stiftung, Germany. pdf 184 p. Welcome Address Dear Participants, Welcome to the 2nd Humboldt Kolleg in "Nanoscale Science and Technology" (NS\&T'12) in Tunisia, sponsored by the "Alexander von Humboldt" foundation. The NS\&T'12 multidisciplinary scientific program includes seven "hot" topics dealing with "Nanoscale Science and Technology" covering basic and application-oriented research as well as industrial (market) aspects: - Molecular Biophyics, Spectroscopy Techniques, Imaging Microscopy - Nanomaterials Synthesis for Medicine and Bio-chemical Sensors - Nanostructures, Semiconductors, Photonics and Nanodevices - New Technologies in Market Industry - Environment, Electro-chemistry, Bio-polymers and Fuel Cells - Nanomaterials, Photovoltaic, Modelling, Quantum Physics - Microelectronics, Sensors Networks and Embedded Systems We are deeply indebted to all members of the Scientific Committee and General Chairs for joint Sessions and to all speakers and chairmen, who have dedicated invaluable time and efforts for the realization of this event. On behalf of the Organizing Committee, we are cordially inviting you to join the conference and hope that your stay will be fruitful, rewarding and enjoyable. Prof. Dr. Michael J. Sch{\"o}ning, Prof. Dr. Adnane Abdelghani}, subject = {Biosensor}, language = {en} } @article{SchoeningSchubertKloocketal.2002, author = {Sch{\"o}ning, Michael Josef and Schubert, J and Kloock, Joachim P. and Zander, W. and Mourzina, Y. G. and Legin, A. and Vlasov, Y. G. and L{\"u}th, H.}, title = {Innovative thin film techniques for microfabricating electrochemical sensors}, series = {Lecture Notes of the ICB Seminars}, journal = {Lecture Notes of the ICB Seminars}, publisher = {MCB}, address = {Warsaw}, pages = {55 -- 66}, year = {2002}, language = {en} } @article{Schoening2003, author = {Sch{\"o}ning, Michael Josef}, title = {Silicon-based biochemical sensors}, series = {CNI - The Center of Nanoelectronic Systems for Information Technology}, journal = {CNI - The Center of Nanoelectronic Systems for Information Technology}, publisher = {Foschungszentrum J{\"u}lich}, pages = {165 -- 170}, year = {2003}, language = {en} } @article{SchoeningLueth2002, author = {Sch{\"o}ning, Michael Josef and L{\"u}th, H.}, title = {Microfabricated semiconductor structures - Advances in (bio-)chemical sensing}, series = {Coupling of biological and electronic systems : proceedings of the 2nd Caesarium, Bonn, November 1 - 3, 2000 / Karl-Heinz Hoffmann, ed.}, journal = {Coupling of biological and electronic systems : proceedings of the 2nd Caesarium, Bonn, November 1 - 3, 2000 / Karl-Heinz Hoffmann, ed.}, publisher = {Springer}, address = {Berlin [u.a.]}, isbn = {3-540-43699-5}, pages = {79 -- 92}, year = {2002}, language = {en} } @article{SchoeningSchubertKloocketal.2001, author = {Sch{\"o}ning, Michael Josef and Schubert, Joachim P. and Kloock, Joachim P. and Zander, W. and Mourzina, Y. G. and Legin, A. and Vlasov, Y. G. and L{\"u}th, H.}, title = {Innovative thin film techniques for microfabricating electrochemical sensors}, series = {Biocybernetics and Biomedical Engineering. 21 (2001), H. 4}, journal = {Biocybernetics and Biomedical Engineering. 21 (2001), H. 4}, isbn = {0208-5216}, pages = {107 -- 119}, year = {2001}, language = {en} } @article{SchrothWeissbeckerSchuetzetal.2002, author = {Schroth, P. and Weißbecker, B. and Sch{\"u}tz, S. and Ecken, H. and Yoshinobu, T. and L{\"u}th, H. and Sch{\"o}ning, Michael Josef}, title = {Bioelectronic signal processing - intact chemoreceptors coupled to field-effect devices}, series = {Lecture Notes of the ICB Seminars}, journal = {Lecture Notes of the ICB Seminars}, publisher = {MCB}, address = {Warsaw}, pages = {28 -- 42}, year = {2002}, language = {en} } @article{SchrothWeissbeckerSchuetzetal.2001, author = {Schroth, P. and Weißbecker, B. and Sch{\"u}tz, S. and Ecken, H. and Yoshinobu, T. and L{\"u}th, H. and Sch{\"o}ning, Michael Josef}, title = {Bioelectronic signal processing - intact chemoreceptors coupled to field-effect devices}, series = {Biocybernetics and Biomedical Engineering. 21 (2001), H. 3}, journal = {Biocybernetics and Biomedical Engineering. 21 (2001), H. 3}, isbn = {0208-5216}, pages = {27 -- 42}, year = {2001}, language = {en} } @article{Schoening2002, author = {Sch{\"o}ning, Michael Josef}, title = {Novel approaches to design siliconbased field-effect sensors}, series = {Electrochemical Microsystem Technologies, New Trends in Electrochemistry Vol. 2}, journal = {Electrochemical Microsystem Technologies, New Trends in Electrochemistry Vol. 2}, publisher = {Taylor \& Francis}, address = {London New York}, pages = {384 -- 408}, year = {2002}, language = {en} } @article{SchoeningLueth2001, author = {Sch{\"o}ning, Michael Josef and L{\"u}th, H.}, title = {Novel concepts for silicon-based biosensors}, series = {Physica Status Solidi (A) (2001)}, journal = {Physica Status Solidi (A) (2001)}, isbn = {0031-8965}, pages = {65 -- 77}, year = {2001}, language = {en} } @article{WagnerBegingRotteretal.2007, author = {Wagner, Torsten and Beging, Stefan and Rotter, L. and Poghossian, Arshak and Biselli, Manfred and Zang, Werner and Sch{\"o}ning, Michael Josef}, title = {Online-Messsysteme f{\"u}r die automatisierte Charakterisierung von feldeffektbasierten Biosensoren}, series = {8. Dresdner Sensor-Symposium : Sensoren f{\"u}r Umwelt, Klima und Sicherheit, Biosensoren und Biosysteme, Sensoren und Sensorsysteme f{\"u}r die Prozesstechnik, Trends in der Sensortechnik, Materialentwicklung f{\"u}r die Sensorik; 8. Dresdner Sensor-Symposium, 10. - 12. Dezember 2007, Dresden / Gerald Gerlach ... (Hg.)}, journal = {8. Dresdner Sensor-Symposium : Sensoren f{\"u}r Umwelt, Klima und Sicherheit, Biosensoren und Biosysteme, Sensoren und Sensorsysteme f{\"u}r die Prozesstechnik, Trends in der Sensortechnik, Materialentwicklung f{\"u}r die Sensorik; 8. Dresdner Sensor-Symposium, 10. - 12. Dezember 2007, Dresden / Gerald Gerlach ... (Hg.)}, publisher = {TUDpress, Verl. der Wissenschaften}, address = {Dresden}, isbn = {978-3-940046-45-1}, pages = {257 -- 260}, year = {2007}, language = {de} } @article{PoghossianPlatenSchoening2005, author = {Poghossian, Arshak and Platen, J. and Sch{\"o}ning, Michael Josef}, title = {Towards self-aligned nanostructures by means of layerexpansion technique}, series = {Electrochimica Acta. 51 (2005), H. 5}, journal = {Electrochimica Acta. 51 (2005), H. 5}, isbn = {0013-4686}, pages = {838 -- 843}, year = {2005}, language = {en} } @article{NaetherRolkaPoghossianetal.2005, author = {N{\"a}ther, Niko and Rolka, David and Poghossian, Arshak and Koudelka-Hep, M. and Sch{\"o}ning, Michael Josef}, title = {Two microcell flow-injection analysis (FIA) platforms for capacitive silicon-based field-effect sensors}, series = {Electrochimica Acta. 51 (2005), H. 5}, journal = {Electrochimica Acta. 51 (2005), H. 5}, isbn = {0013-4686}, doi = {10.1016/j.electacta.2005.04.066}, pages = {924 -- 929}, year = {2005}, language = {en} } @article{SimonisDawgulLuethetal.2005, author = {Simonis, A. and Dawgul, M. and L{\"u}th, H. and Sch{\"o}ning, Michael Josef}, title = {Miniaturised reference electrodes for field-effect sensors compatible to silicon chip technology}, series = {Electrochimica Acta. 51 (2005), H. 5}, journal = {Electrochimica Acta. 51 (2005), H. 5}, isbn = {0013-4686}, doi = {10.1016/j.electacta.2005.04.063}, pages = {930 -- 937}, year = {2005}, language = {en} } @article{SchoeningNaetherAugeretal.2005, author = {Sch{\"o}ning, Michael Josef and N{\"a}ther, Niko and Auger, V. and Poghossian, Arshak and Koudelka-Hep, M.}, title = {Miniaturised flow-through cell with integrated capacitive EIS sensor fabricated at wafer level using Si and SU-8 technologies}, series = {Sensors and Actuators B. 108 (2005), H. 1-2}, journal = {Sensors and Actuators B. 108 (2005), H. 1-2}, isbn = {0925-4005}, pages = {986 -- 992}, year = {2005}, language = {en} } @article{PoghossianSchoening2004, author = {Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Detecting Both Physical and (Bio-)Chemical Parameters by Means of ISFET Devices}, series = {Electroanalysis. 16 (2004), H. 22}, journal = {Electroanalysis. 16 (2004), H. 22}, isbn = {1040-0397}, pages = {1863 -- 1872}, year = {2004}, language = {en} } @article{SchoeningPoghossian2002, author = {Sch{\"o}ning, Michael Josef and Poghossian, Arshak}, title = {Recent advances in biologically sensitive field-effect transistors (BioFETs)}, series = {Analyst. 127 (2002)}, journal = {Analyst. 127 (2002)}, isbn = {0003-2654}, pages = {1137 -- 1151}, year = {2002}, language = {en} } @article{PoghossianLuethSchultzeetal.2001, author = {Poghossian, Arshak and L{\"u}th, H. and Schultze, J. W. and Sch{\"o}ning, Michael Josef}, title = {(Bio-)chemical and physical microsensor array using an identical transducer principle}, series = {Scaling down in electrochemistry : electrochemical micro- and nanosystem technology ; proceedings of the 3rd International Symposium on Electrochemical Microsystem Technologies, Garmisch-Patenkirchen, Germany, 11 - 15 September 2000 / ed. by J. W. Schultz}, journal = {Scaling down in electrochemistry : electrochemical micro- and nanosystem technology ; proceedings of the 3rd International Symposium on Electrochemical Microsystem Technologies, Garmisch-Patenkirchen, Germany, 11 - 15 September 2000 / ed. by J. W. Schultz}, publisher = {Elsevier [u.a.]}, address = {Amsterdam [u.a.]}, isbn = {0-08-044014-2}, pages = {243 -- 249}, year = {2001}, language = {en} } @article{YoshinobuEckenIsmailetal.2001, author = {Yoshinobu, T. and Ecken, H. and Ismail, Md.A.B. and Iwasaki, H. and L{\"u}th, H. and Sch{\"o}ning, Michael Josef}, title = {Chemical imaging sensor and its application to biological systems}, series = {Scaling down in electrochemistry : electrochemical micro- and nanosystem technology ; proceedings of the 3rd International Symposium on Electrochemical Microsystem Technologies, Garmisch-Patenkirchen, Germany, 11 - 15 September 2000 / ed. by J. W. Schultz}, journal = {Scaling down in electrochemistry : electrochemical micro- and nanosystem technology ; proceedings of the 3rd International Symposium on Electrochemical Microsystem Technologies, Garmisch-Patenkirchen, Germany, 11 - 15 September 2000 / ed. by J. W. Schultz}, publisher = {Elsevier [u.a.]}, address = {Amsterdam [u.a.]}, isbn = {0-08-044014-2}, pages = {259 -- 263}, year = {2001}, language = {en} } @article{SchrothLuethHummeletal.2001, author = {Schroth, P. and L{\"u}th, H. and Hummel, Hans E. and Sch{\"u}tz, S. and Sch{\"o}ning, Michael Josef}, title = {Characterising an insect antenna as a receptor for a biosensor by means of impedance spectroscopy}, series = {Scaling down in electrochemistry : electrochemical micro- and nanosystem technology ; proceedings of the 3rd International Symposium on Electrochemical Microsystem Technologies, Garmisch-Patenkirchen, Germany, 11 - 15 September 2000 / ed. by J. W. Schultz}, journal = {Scaling down in electrochemistry : electrochemical micro- and nanosystem technology ; proceedings of the 3rd International Symposium on Electrochemical Microsystem Technologies, Garmisch-Patenkirchen, Germany, 11 - 15 September 2000 / ed. by J. W. Schultz}, publisher = {Elsevier [u.a.]}, address = {Amsterdam [u.a.]}, isbn = {0-08-044014-2}, pages = {293 -- 297}, year = {2001}, language = {en} } @article{HeiduschkaRomannEckenetal.2001, author = {Heiduschka, P. and Romann, I. and Ecken, H. and Sch{\"o}ning, Michael Josef and Schuhmann, W. and Thanos, S.}, title = {Defined adhesion and growth of neurones on artificial structured substrates}, series = {Scaling down in electrochemistry : electrochemical micro- and nanosystem technology ; proceedings of the 3rd International Symposium on Electrochemical Microsystem Technologies, Garmisch-Patenkirchen, Germany, 11 - 15 September 2000 / ed. by J. W. Schultz}, journal = {Scaling down in electrochemistry : electrochemical micro- and nanosystem technology ; proceedings of the 3rd International Symposium on Electrochemical Microsystem Technologies, Garmisch-Patenkirchen, Germany, 11 - 15 September 2000 / ed. by J. W. Schultz}, publisher = {Elsevier [u.a.]}, address = {Amsterdam [u.a.]}, isbn = {0-08-044014-2}, pages = {299 -- 307}, year = {2001}, language = {en} } @article{Schoening1993, author = {Sch{\"o}ning, Michael Josef}, title = {Feldeffektstrukturen mit AgI-Aufdampfschichten als chemische Sensoren}, series = {KfK-Bericht. 5195 (1993)}, journal = {KfK-Bericht. 5195 (1993)}, isbn = {0303-4003}, pages = {1 -- 95}, year = {1993}, language = {de} } @article{PoghossianMaiMourzinaetal.2004, author = {Poghossian, Arshak and Mai, D.-T. and Mourzina, Y. and Sch{\"o}ning, Michael Josef}, title = {Impedance effect of an ion-sensitive membrane: characterisation of an EMIS sensor by impedance spectroscopy, capacitance-voltage and constant-capacitance method}, series = {Sensors and Actuators B. 103 (2004), H. 1-2}, journal = {Sensors and Actuators B. 103 (2004), H. 1-2}, isbn = {0925-4005}, pages = {423 -- 428}, year = {2004}, language = {en} } @article{SchoeningKloock2004, author = {Sch{\"o}ning, Michael Josef and Kloock, Joachim P.}, title = {Labor f{\"u}r Chemo- und Biosensorik an der FH Aachen, Abt. J{\"u}lich - Mehr als nur studieren}, series = {Fachblatt Fachhochschule Aachen (2004)}, journal = {Fachblatt Fachhochschule Aachen (2004)}, isbn = {1430-7707}, pages = {18 -- 19}, year = {2004}, language = {de} } @article{KloockMourzinaErmolenkoetal.2004, author = {Kloock, Joachim P. and Mourzina, Y.G. and Ermolenko, Y. and Doll, T. and Schubert, J. and Sch{\"o}ning, Michael Josef}, title = {Inorganic thin-film sensor membranes with PLD-prepared chalcogenide glasses: Challenges and implementation}, series = {Sensors. 4 (2004), H. 10}, journal = {Sensors. 4 (2004), H. 10}, isbn = {1424-8220}, pages = {156 -- 162}, year = {2004}, language = {en} } @article{YoshinobuSchoeningFingeretal.2004, author = {Yoshinobu, T. and Sch{\"o}ning, Michael Josef and Finger, F. and Moritz, W. and Iwasaki, H.}, title = {Fabrication of thin-film LAPS with amorphous silicon}, series = {Sensors. 4 (2004), H. 10}, journal = {Sensors. 4 (2004), H. 10}, isbn = {1424-8220}, pages = {163 -- 169}, year = {2004}, language = {en} } @article{PoghossianIngebrandtYeungetal.2004, author = {Poghossian, Arshak and Ingebrandt, S. and Yeung, C.-K. and Offenh{\"a}usser, A. and Sch{\"o}ning, Michael Josef}, title = {Microsensors based on ion-sensitive field-effect transistors for biomedical applications}, series = {Biomedizinische Technik. 49 (2004), H. 2}, journal = {Biomedizinische Technik. 49 (2004), H. 2}, isbn = {0932-4666}, pages = {1036 -- 1037}, year = {2004}, language = {en} } @article{KassabHanPoghossianetal.2004, author = {Kassab, T. and Han, Y. and Poghossian, Arshak and Ingebrandt, S. and Offenh{\"a}usser, A. and Sch{\"o}ning, Michael Josef}, title = {Detection of layerby-layer adsorbed polyelectrolytes by means of field-effect based capacitive EIS structures}, series = {Biomedizinische Technik. 49 (2004), H. 2}, journal = {Biomedizinische Technik. 49 (2004), H. 2}, isbn = {0932-4666}, pages = {1034 -- 1035}, year = {2004}, language = {en} } @article{MoritzYoshinobuFingeretal.2004, author = {Moritz, W. and Yoshinobu, T. and Finger, F. and Krause, S. and Xu, M. and Sch{\"o}ning, Michael Josef}, title = {Microscopy of impedance and surface ion concentrations}, series = {Biomedizinische Technik. 49 (2004), H. 2}, journal = {Biomedizinische Technik. 49 (2004), H. 2}, isbn = {0932-4666}, pages = {1000 -- 1001}, year = {2004}, language = {en} } @article{ErmolenkoYoshinobuMourzinaetal.2004, author = {Ermolenko, Y. E. and Yoshinobu, T. and Mourzina, Y. G. and Vlasov, Y. G. and Sch{\"o}ning, Michael Josef and Iwasaki, H.}, title = {Laserscanned transducer (LSST) as a multisensor system}, series = {Sensors and Actuators B. 103 (2004), H. 1-2}, journal = {Sensors and Actuators B. 103 (2004), H. 1-2}, isbn = {0925-4005}, pages = {457 -- 462}, year = {2004}, language = {en} } @article{SchoeningGlueckThust1999, author = {Sch{\"o}ning, Michael Josef and Gl{\"u}ck, O. and Thust, M.}, title = {Electrochemical methods for the determination of chemical variables in aqueous media}, series = {The measurement, instrumentation, and sensors handbook / ed.-in-chief John G. Webster. In cooperation with IEEE Press}, journal = {The measurement, instrumentation, and sensors handbook / ed.-in-chief John G. Webster. In cooperation with IEEE Press}, publisher = {CRC Press}, address = {Boca Raton [u.a.]}, isbn = {0-8493-8347-1}, pages = {1 -- 49}, year = {1999}, language = {en} } @article{SchoeningThustKordosetal.1999, author = {Sch{\"o}ning, Michael Josef and Thust, M. and Kordos, P. and L{\"u}th, H.}, title = {Chemical sensing structures - From EIS capacitors to array-type sensors}, series = {Solid state chemical and biochemical sensors : proceedings of Topical Symposium 9 - "Solid State Chemical and Biochemical Sensors" of the Forum on New Materials of the 9th CIMTEC-World Ceramics Congress and Forum on New Materials Florence, Italy June 14-1}, journal = {Solid state chemical and biochemical sensors : proceedings of Topical Symposium 9 - "Solid State Chemical and Biochemical Sensors" of the Forum on New Materials of the 9th CIMTEC-World Ceramics Congress and Forum on New Materials Florence, Italy June 14-1}, publisher = {Techna}, address = {Faenza}, isbn = {88-86538-27-8}, pages = {55 -- 62}, year = {1999}, language = {en} } @article{SchuetzWeissbeckerSchrothetal.2001, author = {Sch{\"u}tz, S. and Weißbecker, G. and Schroth, P. and Sch{\"o}ning, Michael Josef}, title = {Linkage of inanimate structures to biological systems - smart materials in biological micro- nanosystems}, series = {Smart materials : proceedings of the 1st Caesarium, Bonn, November 17 - 19, 1999 / Karl-Heinz Hoffmann ed.}, journal = {Smart materials : proceedings of the 1st Caesarium, Bonn, November 17 - 19, 1999 / Karl-Heinz Hoffmann ed.}, publisher = {Springer}, address = {Berlin [u.a.]}, isbn = {3-540-67957-X}, pages = {149 -- 157}, year = {2001}, language = {en} } @article{SchoeningSchrothSchuetz2000, author = {Sch{\"o}ning, Michael Josef and Schroth, P. and Sch{\"u}tz, S.}, title = {The use of insect chemoreceptors for the assembly of biosensors based on semiconductor field-effect sensors}, series = {Electroanalysis. 12 (2000), H. 9}, journal = {Electroanalysis. 12 (2000), H. 9}, isbn = {1040-0397}, pages = {645 -- 652}, year = {2000}, language = {en} } @article{YoshinobuUiIwasakietal.2004, author = {Yoshinobu, T. and Ui, Y. and Iwasaki, H. and N{\"a}ther, Niko and Koudelka-Hep, M. and Sch{\"o}ning, Michael Josef}, title = {Potentiometric imaging in a microfluidic channel}, series = {Biomedizinische Technik. 49 (2004), H. 2}, journal = {Biomedizinische Technik. 49 (2004), H. 2}, isbn = {0932-4666}, pages = {998 -- 999}, year = {2004}, language = {en} } @article{WagnerSchoeningOttoetal.2004, author = {Wagner, Torsten and Sch{\"o}ning, Michael Josef and Otto, R. and Yoshinobu, T.}, title = {A handheld 16 channel pen-type LAPS as a platform for (bio-)electrochemical sensing}, series = {Biomedizinische Technik. 49 (2004), H. 2}, journal = {Biomedizinische Technik. 49 (2004), H. 2}, isbn = {0932-4666}, pages = {996 -- 997}, year = {2004}, language = {en} } @article{NaetherAugerPoghossianetal.2004, author = {N{\"a}ther, Niko and Auger, V. and Poghossian, Arshak and Koudelka-Hep, M. and Sch{\"o}ning, Michael Josef}, title = {A miniaturized flow-through cell in SU-8 technique for EIS sensors}, series = {Biomedizinische Technik. 49 (2004), H. 2}, journal = {Biomedizinische Technik. 49 (2004), H. 2}, isbn = {0932-4666}, pages = {994 -- 995}, year = {2004}, language = {en} } @article{RolkaPoghossianSchoening2004, author = {Rolka, David and Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Integration of a capacitive EIS sensor into a FIA system for pH and penicillin determination}, series = {Sensors. 4 (2004)}, journal = {Sensors. 4 (2004)}, isbn = {1424-8220}, pages = {84 -- 94}, year = {2004}, language = {en} } @article{MuckWangJacobsetal.2004, author = {Muck, A. and Wang, J. and Jacobs, M. and Chen, G. and Chatrathi, M. P. and Jurka, V. and Vyborny, Z. and Spillmann, S. D. and Sridharan, G. and Sch{\"o}ning, Michael Josef}, title = {Fabrication of poly(methyl methacrylate) microfluidic chips by atmospheric molding}, series = {Analytical Chemistry. 76 (2004), H. 8}, journal = {Analytical Chemistry. 76 (2004), H. 8}, isbn = {0003-2700}, pages = {2290 -- 2297}, year = {2004}, language = {en} } @article{SchoeningKloockKnobbeetal.2004, author = {Sch{\"o}ning, Michael Josef and Kloock, Joachim P. and Knobbe, D.-T. and Krause, R. and Block, K. and Wang, J. and Mulchandani, A. and Keusgen, M.}, title = {Direktnachweis von Pestiziden und Cyanid mit elektrochemischen Enzymsensoren}, series = {Sensoren und Messsysteme 2004 : Tagung Ludwigsburg, 15. und 16. M{\"a}rz 2004 / VDI-VDE-Gesellschaft Mess- und Automatisierungstechnik}, journal = {Sensoren und Messsysteme 2004 : Tagung Ludwigsburg, 15. und 16. M{\"a}rz 2004 / VDI-VDE-Gesellschaft Mess- und Automatisierungstechnik}, publisher = {VDI}, address = {D{\"u}sseldorf}, isbn = {3-18-091829-2}, pages = {699 -- 706}, year = {2004}, language = {en} } @article{SchoeningJuengerKeusgen2004, author = {Sch{\"o}ning, Michael Josef and J{\"u}nger, M. and Keusgen, M.}, title = {Knoblauchgehaltsbestimmungen mit einem feldeffektbasierten Halbleiterbiosensor}, series = {Sensoren und Messsysteme 2004 : Tagung Ludwigsburg, 15. und 16. M{\"a}rz 2004 / VDI-VDE-Gesellschaft Mess- und Automatisierungstechnik}, journal = {Sensoren und Messsysteme 2004 : Tagung Ludwigsburg, 15. und 16. M{\"a}rz 2004 / VDI-VDE-Gesellschaft Mess- und Automatisierungstechnik}, publisher = {VDI}, address = {D{\"u}sseldorf}, isbn = {3-18-091829-2}, pages = {707 -- 714}, year = {2004}, language = {de} } @article{SimonisLuethWangetal.2004, author = {Simonis, A. and L{\"u}th, H. and Wang, J. and Sch{\"o}ning, Michael Josef}, title = {Miniaturisierte Referenzelektroden in Siliziumtechnologie f{\"u}r elektrochemische Sensoranwendungen}, series = {Sensoren und Messsysteme 2004 : Tagung Ludwigsburg, 15. und 16. M{\"a}rz 2004 / VDI-VDE-Gesellschaft Mess- und Automatisierungstechnik}, journal = {Sensoren und Messsysteme 2004 : Tagung Ludwigsburg, 15. und 16. M{\"a}rz 2004 / VDI-VDE-Gesellschaft Mess- und Automatisierungstechnik}, publisher = {VDI}, address = {D{\"u}sseldorf}, isbn = {3-18-091829-2}, pages = {847 -- 850}, year = {2004}, language = {de} } @article{KnobbeSchoeningPoghossianetal.2004, author = {Knobbe, D.-T. and Sch{\"o}ning, Michael Josef and Poghossian, Arshak and Mourzina, Y.}, title = {Charakterisierung von kapazitiven EMISSensoren mittels Impedanzspektroskopie, Kapazit{\"a}ts-Spannungs- und Konstant-Kapazit{\"a}ts-Messung}, series = {Sensoren und Messsysteme 2004 : Tagung Ludwigsburg, 15. und 16. M{\"a}rz 2004 / VDI-VDE-Gesellschaft Mess- und Automatisierungstechnik}, journal = {Sensoren und Messsysteme 2004 : Tagung Ludwigsburg, 15. und 16. M{\"a}rz 2004 / VDI-VDE-Gesellschaft Mess- und Automatisierungstechnik}, publisher = {VDI}, address = {D{\"u}sseldorf}, isbn = {3-18-091829-2}, pages = {851 -- 854}, year = {2004}, language = {de} } @article{MourzinaYoshinobuErmolenkoetal.2004, author = {Mourzina, Ioulia G. and Yoshinobu, Tatsuo and Ermolenko, Yuri E. and Vlasov, Yuri G. and Sch{\"o}ning, Michael Josef and Iwasaki, H.}, title = {Immobilization of urease and cholinesterase on the surface of semiconductor transducer for the development of lightaddressable potentiometric sensors}, series = {Microchimica Acta. 144 (2004), H. 1-3}, journal = {Microchimica Acta. 144 (2004), H. 1-3}, isbn = {0026-3672}, pages = {41 -- 50}, year = {2004}, language = {en} } @article{MoritzYoshinobuFingeretal.2004, author = {Moritz, W. and Yoshinobu, T. and Finger, F. and Krause, S. and Martin-Fernandez, M. and Sch{\"o}ning, Michael Josef}, title = {High resolution LAPS using amorphous silicon as the semiconductor material}, series = {Sensors and Actuators B. 103 (2004), H. 1-2}, journal = {Sensors and Actuators B. 103 (2004), H. 1-2}, isbn = {0925-4005}, pages = {436 -- 444}, year = {2004}, language = {en} } @article{GlueckSchoeningLuethetal.1998, author = {Gl{\"u}ck, O. and Sch{\"o}ning, Michael Josef and L{\"u}th, H. and Emons, H. and Otto, A.}, title = {Schwermetallbestimmung mittels Widerstandsmessungen und Voltammetrie an D{\"u}nnschichtelektroden}, series = {Chemie- und Biosensoren : aktuelle Anwendungen und Entwicklungstrends / 3. Dresdner Sensor-Symposium, 8. - 10. Dezember 1997, Dresden-Radebeul. J. P. Baselt ... (Hg.)}, journal = {Chemie- und Biosensoren : aktuelle Anwendungen und Entwicklungstrends / 3. Dresdner Sensor-Symposium, 8. - 10. Dezember 1997, Dresden-Radebeul. J. P. Baselt ... (Hg.)}, publisher = {Dresden Univ. Press}, address = {Dresden ; M{\"u}nchen}, isbn = {3-933168-03-1}, pages = {165 -- 168}, year = {1998}, language = {de} } @article{SchoeningPraemassingBeckersetal.1998, author = {Sch{\"o}ning, Michael Josef and Pr{\"a}massing, T. and Beckers, L. and Zander, W.}, title = {Ein langzeitstabiler pH-Sensor auf Siliziumbasis hergestellt in D{\"u}nnschichttechnik mittels Laserablation}, series = {Chemie- und Biosensoren : aktuelle Anwendungen und Entwicklungstrends / 3. Dresdner Sensor-Symposium, 8. - 10. Dezember 1997, Dresden-Radebeul. J. P. Baselt ... (Hg.)}, journal = {Chemie- und Biosensoren : aktuelle Anwendungen und Entwicklungstrends / 3. Dresdner Sensor-Symposium, 8. - 10. Dezember 1997, Dresden-Radebeul. J. P. Baselt ... (Hg.)}, publisher = {Dresden Univ. Press}, address = {Dresden ; M{\"u}nchen}, isbn = {3-933168-03-1}, pages = {99 -- 102}, year = {1998}, language = {de} } @article{SchoeningGlueckSchrothetal.1999, author = {Sch{\"o}ning, Michael Josef and Gl{\"u}ck, O. and Schroth, P. and Sch{\"u}tz, S. (u.a.)}, title = {Microelectrodes, capacitors and BioFETs: Novel trends in silicon-based biochemical sensing}, series = {Biocybernetics and Biomedical Engineering. 19 (1999), H. 1}, journal = {Biocybernetics and Biomedical Engineering. 19 (1999), H. 1}, issn = {0208-5216}, pages = {105 -- 126}, year = {1999}, language = {en} } @article{KeusgenKloockKnobbeetal.2004, author = {Keusgen, M. and Kloock, Joachim P. and Knobbe, D.-T. and J{\"u}nger, M. and Krest, I. and Goldbach, M. and Klein, W. and Sch{\"o}ning, Michael Josef}, title = {Direct determination of cyanides by potentiometric biosensors}, series = {Sensors and Actuators B. 103 (2004), H. 1-2}, journal = {Sensors and Actuators B. 103 (2004), H. 1-2}, isbn = {0925-4005}, pages = {380 -- 385}, year = {2004}, language = {en} } @article{PoghossianCherstvyIngebrandtetal.2005, author = {Poghossian, Arshak and Cherstvy, A. and Ingebrandt, S. and Offenh{\"a}usser, A. and Sch{\"o}ning, Michael Josef}, title = {Possibilities and limitations of label-free detection of DNA hybridization with field-effect-based devices}, series = {Sensors and Actuators B. 111-112 (2005)}, journal = {Sensors and Actuators B. 111-112 (2005)}, isbn = {0925-4005}, pages = {470 -- 480}, year = {2005}, language = {en} } @article{SchoeningJacobsMucketal.2005, author = {Sch{\"o}ning, Michael Josef and Jacobs, M. and Muck, A. and Knobbe, D.-T. and Wang, J. and Chatrathi, M. and Spillmann, S.}, title = {Amperometric PDMS/glass capillary electrophoresis-based biosensor microchip for catechol and dopamin detection}, series = {Sensors and Actuators B. 108 (2005), H. 1-2}, journal = {Sensors and Actuators B. 108 (2005), H. 1-2}, isbn = {0925-4005}, pages = {688 -- 694}, year = {2005}, language = {en} } @article{SchoeningWagnerWangetal.2005, author = {Sch{\"o}ning, Michael Josef and Wagner, Torsten and Wang, C. and Otto, R. and Yoshinobu, T.}, title = {Development of a handheld 16 channel pen-type LAPS for electrochemical sensing}, series = {Sensors and Actuators B. 108 (2005)}, journal = {Sensors and Actuators B. 108 (2005)}, isbn = {0925-4005}, pages = {808 -- 814}, year = {2005}, language = {en} } @article{Schoening2005, author = {Sch{\"o}ning, Michael Josef}, title = {"Playing around" with field-effect sensors on the basis of EIS structures, LAPS and ISFETs}, series = {Sensors. 5 (2005), H. 3}, journal = {Sensors. 5 (2005), H. 3}, isbn = {1424-8220}, pages = {126 -- 138}, year = {2005}, language = {en} } @article{SimonisLuethWangetal.2004, author = {Simonis, A. and L{\"u}th, H. and Wang, J. and Sch{\"o}ning, Michael Josef}, title = {New concepts of miniaturised reference electrodes in silicon technology for potentiometric sensor systems}, series = {Sensors and Actuators B. 103 (2004), H. 1-2}, journal = {Sensors and Actuators B. 103 (2004), H. 1-2}, isbn = {0925-4005}, pages = {429 -- 435}, year = {2004}, language = {en} } @article{Schoening2004, author = {Sch{\"o}ning, Michael Josef}, title = {"Voltohmmetry" - a new transducer principle for electrochemical sensors}, series = {Ultrathin electrochemical chemo- and biosensors : technology and performance / Vladimir M. Mirsky}, journal = {Ultrathin electrochemical chemo- and biosensors : technology and performance / Vladimir M. Mirsky}, publisher = {Springer}, address = {Berlin [u.a.]}, isbn = {3-540-21285-X}, pages = {117 -- 140}, year = {2004}, language = {en} } @article{KeusgenJuengerKnobbeetal.2003, author = {Keusgen, M. and J{\"u}nger, M. and Knobbe, D.-T. and Kloock, Joachim P. and Sch{\"o}ning, Michael Josef}, title = {Entwicklung eines potentiometrischen Cyanid-Biosensors auf der Basis von EIS-Strukturen}, series = {Sensoren f{\"u}r zuk{\"u}nftige Hochtechnologien und Neuentwicklungen f{\"u}r die Verfahrenstechnik / 6. Dresdner Sensor-Symposium, 8. - 10. Dezember 2003, Dresden. J{\"o}rg Peter Baselt; Gerald Gerlach (Hg.)}, journal = {Sensoren f{\"u}r zuk{\"u}nftige Hochtechnologien und Neuentwicklungen f{\"u}r die Verfahrenstechnik / 6. Dresdner Sensor-Symposium, 8. - 10. Dezember 2003, Dresden. J{\"o}rg Peter Baselt; Gerald Gerlach (Hg.)}, publisher = {w.e.b.-Univ.-Verl.}, address = {Dresden}, isbn = {3-935712-92-8}, pages = {235 -- 238}, year = {2003}, language = {de} } @article{ThustSchoeningMuchandanietal.2003, author = {Thust, M. and Sch{\"o}ning, Michael Josef and Muchandani, A. and Wang, J. and Arzdorf, M. and Mulchandani, P. and Chen, W.}, title = {Feldeffekt-Enzymsensor zur Detektion von Pestiziden}, series = {Sensoren f{\"u}r zuk{\"u}nftige Hochtechnologien und Neuentwicklungen f{\"u}r die Verfahrenstechnik / 6. Dresdner Sensor-Symposium, 8. - 10. Dezember 2003, Dresden. J{\"o}rg Peter Baselt; Gerald Gerlach (Hg.)}, journal = {Sensoren f{\"u}r zuk{\"u}nftige Hochtechnologien und Neuentwicklungen f{\"u}r die Verfahrenstechnik / 6. Dresdner Sensor-Symposium, 8. - 10. Dezember 2003, Dresden. J{\"o}rg Peter Baselt; Gerald Gerlach (Hg.)}, publisher = {w.e.b.-Univ.-Verl.}, address = {Dresden}, isbn = {3-935712-92-8}, pages = {125 -- 128}, year = {2003}, language = {de} } @article{PoghossianSchoening2003, author = {Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {"High-order" hybrid FET module for (bio)chemical and physical sensing}, series = {Integrated analytical systems / ed. by Salvador Alegret}, journal = {Integrated analytical systems / ed. by Salvador Alegret}, publisher = {Elsevier}, address = {Amsterdam [u.a.]}, isbn = {0-444-51037-0}, pages = {587 -- 623}, year = {2003}, language = {en} } @article{KeusgenSchoening2004, author = {Keusgen, M. and Sch{\"o}ning, Michael Josef}, title = {Strategies for biosensoric detection of potential drugs in nature}, series = {Biomedizinische Technik. 49 (2004), H. 2}, journal = {Biomedizinische Technik. 49 (2004), H. 2}, isbn = {0932-4666}, pages = {1004 -- 1005}, year = {2004}, language = {en} } @article{KloockMourzinaSchubertetal.2004, author = {Kloock, Joachim P. and Mourzina, Y. and Schubert, J. and Ermelenko, Y. and Sch{\"o}ning, Michael Josef}, title = {Pulsed laser deposition: A tool for fabricating thin-film microsensors}, series = {Biomedizinische Technik. 49 (2004), H. 2}, journal = {Biomedizinische Technik. 49 (2004), H. 2}, isbn = {0932-4666}, pages = {1032 -- 1033}, year = {2004}, language = {en} } @article{ErmelenkoYoshinobuMourzinaetal.2002, author = {Ermelenko, Y. and Yoshinobu, T and Mourzina, Y. and Levichev, S. and Furuichi, K. and Vlasov, Y. and Sch{\"o}ning, Michael Josef and Iwasaki, H.}, title = {Photocurable membranes for ion-selective light-addressable potentiometric sensors}, series = {Sensors and Actuators B. 85 (2002), H. 1-2}, journal = {Sensors and Actuators B. 85 (2002), H. 1-2}, isbn = {0925-4005}, pages = {79 -- 85}, year = {2002}, language = {en} } @article{VlasovMourzinaLeginetal.2002, author = {Vlasov, Y. G. and Mourzina, Y. G. and Legin, A. V. and Ermelenko, Y. E. and Schubert, J. and Sch{\"o}ning, Michael Josef and L{\"u}th, H.}, title = {Solid-state thin film sensors based on chalcogenide materials prepared by planar technology and pulsed laser deposition}, series = {Russian Journal of Applied Chemistry. 75 (2002), H. 3}, journal = {Russian Journal of Applied Chemistry. 75 (2002), H. 3}, isbn = {1070-4272}, pages = {351 -- 356}, year = {2002}, language = {en} } @article{KurowskiSchultzeLuethetal.2002, author = {Kurowski, A. and Schultze, J. and L{\"u}th, H. and Sch{\"o}ning, Michael Josef}, title = {Micro- and nanopatterning of sensor chips by means of macroporous silicon.}, series = {Sensors and Actuators B. 83 (2002), H. 1-3}, journal = {Sensors and Actuators B. 83 (2002), H. 1-3}, isbn = {0925-4005}, pages = {123 -- 128}, year = {2002}, language = {en} } @inproceedings{GroebelWernerJoerresetal.2011, author = {Groebel, Simone and Werner, Frederik and J{\"o}rres, Niklas and Jansen, F. and Kasper, Katharina and Schiffels, Johannes and Sprenger, B. and Baumann, Marcus and Sch{\"o}ning, Michael Josef and Selmer, Thorsten}, title = {Entwicklung einer Sensor-{\"U}berwachung f{\"u}r Biogasanlagen auf Basis von Prozessdaten einer Parallelanlage}, series = {10. Dresdner Sensor-Symposium : Dresden, 5. - 7. Dezember 2011 ; miniaturisierte analytische Verfahren, Hochtemperatur-Sensoren, Sensoren f{\"u}r Bioprozess- und Verfahrenstechnik, Sensoren f{\"u}r die Medizin, Chemische Verfahrenstechnik, Lebensmittelanalytik, innovative Sensorl{\"o}sungen, Sensoren f{\"u}r die Wasserqualit{\"a}t, Selbst{\"u}berwachung / Gerald Gerlach ... (Hg.)}, booktitle = {10. Dresdner Sensor-Symposium : Dresden, 5. - 7. Dezember 2011 ; miniaturisierte analytische Verfahren, Hochtemperatur-Sensoren, Sensoren f{\"u}r Bioprozess- und Verfahrenstechnik, Sensoren f{\"u}r die Medizin, Chemische Verfahrenstechnik, Lebensmittelanalytik, innovative Sensorl{\"o}sungen, Sensoren f{\"u}r die Wasserqualit{\"a}t, Selbst{\"u}berwachung / Gerald Gerlach ... (Hg.)}, publisher = {TUDpress}, address = {Dresden}, isbn = {978-3-942710-53-4}, doi = {10.5162/10dss2011/4.3}, pages = {81 -- 84}, year = {2011}, abstract = {Beim Ausbau nachhaltiger, regenerativer Energieversorgung hat die Umwandlung von organischer Biomasse in Biogas ein großes Potential. Der zugrundeliegende, komplexe biologische Prozess wird noch immer unzureichend verstanden und bedarf systematischer Untersuchungen der Prozessparameter, um einen hohen Ertrag bei guter Gasqualit{\"a}t zu erm{\"o}glichen. Die Fragestellungen zur Entschl{\"u}sselung des Prozesses sind sowohl verfahrenstechnischer als auch mikrobiologischer Natur. Aus mikrobiologischer Sicht ist die Kenntnis der tats{\"a}chlich beteiligten prozesstragenden Mikroorganismen von erheblicher Bedeutung, aus verfahrenstechnischer Sicht die Kenntnis der physikalischen und chemischen Faktoren, welche die mikrobiologischen Prozesse und kontrollieren. Im Zusammenspiel aller dieser Parameter wird die Biogasbildung bef{\"o}rdert oder behindert, bis zum Abbruch des Prozesses. Eine m{\"o}gliche Kontrollmethode ist die Messung der metabolischen Aktivit{\"a}t prozesstragender Organismen. Diese soll, beruhend auf fundierten Prozessdaten, gewonnen durch eine Parallelanlage, mit einem lichtadressierbaren potentiometrischen Sensor-System (LAPS) realisiert werden. Dieser Sensor ist in der Lage, pH-Wert-{\"a}nderungen zu detektieren, die durch den Stoffwechsel der auf dem Chip immobilisierten Organismen hervorgerufen werden, um eine Online-{\"U}berwachung von Biogasanlagen zu erm{\"o}glichen.}, language = {de} } @article{ErmelenkoYoshinobuMourzinaetal.2002, author = {Ermelenko, Y. and Yoshinobu, T. and Mourzina, Y. and Furuichi, K. and Levichev, S. and Vlasov, Y. and Sch{\"o}ning, Michael Josef and Iwasaki, H.}, title = {Lithium sensor based on the laser scanning semiconductor transducer}, series = {Analytica Chimica Acta. 459 (2002), H. 1}, journal = {Analytica Chimica Acta. 459 (2002), H. 1}, issn = {0378-4304}, pages = {1 -- 9}, year = {2002}, language = {en} } @article{SchoeningPoghossianSchultzeetal.2002, author = {Sch{\"o}ning, Michael Josef and Poghossian, Arshak and Schultze, J. W. and L{\"u}th, H.}, title = {Field-effect based multifunctional hybrid sensor module for the determination of both (bio-)chemical and physical paramters}, series = {Proceedings of SPIE. 4576 (2002)}, journal = {Proceedings of SPIE. 4576 (2002)}, pages = {149 -- 159}, year = {2002}, language = {en} } @article{PoghossianBerndsenLuethetal.2001, author = {Poghossian, Arshak and Berndsen, Lars and L{\"u}th, Hans and Sch{\"o}ning, Michael Josef}, title = {Novel concepts for flow-rate and flow-direction determination by means of pH-sensitive ISFETs}, series = {Proceedings of SPIE. 4560 (2001)}, journal = {Proceedings of SPIE. 4560 (2001)}, pages = {19 -- 27}, year = {2001}, language = {en} } @article{SchoeningSchrothLuethetal.2001, author = {Sch{\"o}ning, Michael Josef and Schroth, Peter and L{\"u}th, Hans and Hummel, Hans E. and Sch{\"u}tz, Stefan}, title = {Insect chemoreceptors coupled to silicon transistors as innovative biosensors}, series = {Proceedings of SPIE. 4205 (2001)}, journal = {Proceedings of SPIE. 4205 (2001)}, pages = {152 -- 162}, year = {2001}, language = {en} } @article{SchoeningPoghossianYoshinobuetal.2001, author = {Sch{\"o}ning, Michael Josef and Poghossian, Arshak and Yoshinobu, Tatsuo and L{\"u}th, Hans}, title = {Semiconductor-based field-effect structures for chemical sensing}, pages = {188 -- 198}, year = {2001}, language = {en} } @article{SchoeningKurowskiThustetal.2000, author = {Sch{\"o}ning, Michael Josef and Kurowski, A. and Thust, M. and Kordos, P. and Schultze, J. W. and L{\"u}th, H.}, title = {Capacitive microsensors for biochemical sensing on porous silicon technology}, series = {Sensors and Actuators B. 64 (2000), H. 1-3}, journal = {Sensors and Actuators B. 64 (2000), H. 1-3}, isbn = {0925-4005}, pages = {59 -- 64}, year = {2000}, language = {en} } @article{SchoeningSchuetzSchrothetal.1998, author = {Sch{\"o}ning, Michael Josef and Sch{\"u}tz, S. and Schroth, P. and Weißbecker, B. and Steffen, A. and Kordos, P. and Hummel, Hans E.}, title = {A BioFET on the basis of intact insect antennae}, series = {Sensors and Actuators B. 47 (1998), H. 1-3}, journal = {Sensors and Actuators B. 47 (1998), H. 1-3}, isbn = {0925-4005}, pages = {235 -- 238}, year = {1998}, language = {en} } @article{SchoeningThustMuellerVeggianetal.1998, author = {Sch{\"o}ning, Michael Josef and Thust, M. and M{\"u}ller-Veggian, Mattea and Kordos, P.}, title = {A novel silicon-based sensor array with capacitive EIS structures}, series = {Sensors and Actuators B. 47 (1998), H. 1-3}, journal = {Sensors and Actuators B. 47 (1998), H. 1-3}, isbn = {0925-4005}, pages = {225 -- 230}, year = {1998}, language = {en} } @article{SchoeningTsarouchasSchaubetal.1996, author = {Sch{\"o}ning, Michael Josef and Tsarouchas, D. and Schaub, A. and Beckers, L. (u.a.)}, title = {A highly long-term stable silicon-based pH sensor using pulsed laser deposition technique}, series = {Sensors and Actuators B. 35 (1996), H. 1-3}, journal = {Sensors and Actuators B. 35 (1996), H. 1-3}, isbn = {0925-4005}, pages = {228 -- 233}, year = {1996}, language = {en} } @article{SchoeningSaukeSteffenetal.1995, author = {Sch{\"o}ning, Michael Josef and Sauke, M. and Steffen, A. and Marso, M. (u.a.)}, title = {Ion-sensitive field-effect transistors with ultrathin Langmuir-Blodgett membranes}, series = {Sensors and Actuators B. 27 (1995), H. 1-3}, journal = {Sensors and Actuators B. 27 (1995), H. 1-3}, isbn = {0925-4005}, pages = {325 -- 328}, year = {1995}, language = {en} } @article{SchoeningBrunsHoffmannetal.1993, author = {Sch{\"o}ning, Michael Josef and Bruns, M. and Hoffmann, W. and Hoffmann, B. (u.a.)}, title = {Iodide ion-sensitive field-effect structures}, series = {Sensors and Actuators B. 15 (1993), H. 1-3}, journal = {Sensors and Actuators B. 15 (1993), H. 1-3}, isbn = {0925-4005}, pages = {192 -- 194}, year = {1993}, language = {en} } @article{SchoeningSimonisRugeetal.2002, author = {Sch{\"o}ning, Michael Josef and Simonis, Anette and Ruge, Christian and Ecken, Holger and M{\"u}ller-Veggian, Mattea and L{\"u}th, Hans}, title = {A (bio-)chemical Field-effect Sensor with Macroporous Si as Substrate Material and a SiO₂ / LPCVD-Si₃N₄ Double Layer as pH Transducer}, series = {Sensors. 2 (2002), H. 1}, journal = {Sensors. 2 (2002), H. 1}, isbn = {1424-8220}, doi = {10.3390/s20100011}, pages = {11 -- 22}, year = {2002}, abstract = {Macroporous silicon has been etched from n-type Si, using a vertical etching cell where no rear side contact on the silicon wafer is necessary. The resulting macropores have been characterised by means of Scanning Electron Microscopy (SEM). After etching, SiO₂ was thermally grown on the top of the porous silicon as an insulating layer and Si₃N₄ was deposited by means of Low Pressure Chemical Vapour Deposition (LPCVD) as transducer material to fabricate a capacitive pH sensor. In order to prepare porous biosensors, the enzyme penicillinase has been additionally immobilised inside the porous structure. Electrochemical measurements of the pH sensor and the biosensor with an Electrolyte/Insulator/Semiconductor (EIS) structure have been performed in the Capacitance/Voltage (C/V) and Constant capacitance (ConCap) mode.}, language = {en} } @article{SimonisKringsLuethetal.2001, author = {Simonis, A. and Krings, T. and L{\"u}th, H. and Wang, J. and Sch{\"o}ning, Michael Josef}, title = {A „hybrid" thin-film pH sensor with integrated thick-film reference}, series = {Sensors. 1 (2001), H. 6}, journal = {Sensors. 1 (2001), H. 6}, isbn = {1424-8220}, pages = {183 -- 192}, year = {2001}, language = {en} }