@incollection{DuongSeifarthTemizArtmannetal.2018, author = {Duong, Minh Tuan and Seifarth, Volker and Temiz Artmann, Ayseg{\"u}l and Artmann, Gerhard and Staat, Manfred}, title = {Growth Modelling Promoting Mechanical Stimulation of Smooth Muscle Cells of Porcine Tubular Organs in a Fibrin-PVDF Scaffold}, series = {Biological, Physical and Technical Basics of Cell Engineering}, booktitle = {Biological, Physical and Technical Basics of Cell Engineering}, editor = {Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l and Zhubanova, Azhar A. and Digel, Ilya}, publisher = {Springer}, address = {Singapore}, isbn = {978-981-10-7904-7}, doi = {10.1007/978-981-10-7904-7_9}, pages = {209 -- 232}, year = {2018}, abstract = {Reconstructive surgery and tissue replacements like ureters or bladders reconstruction have been recently studied, taking into account growth and remodelling of cells since living cells are capable of growing, adapting, remodelling or degrading and restoring in order to deform and respond to stimuli. Hence, shapes of ureters or bladders and their microstructure change during growth and these changes strongly depend on external stimuli such as training. We present the mechanical stimulation of smooth muscle cells in a tubular fibrin-PVDFA scaffold and the modelling of the growth of tissue by stimuli. To this end, mechanotransduction was performed with a kyphoplasty balloon catheter that was guided through the lumen of the tubular structure. The bursting pressure was examined to compare the stability of the incubated tissue constructs. The results showed the significant changes on tissues with training by increasing the burst pressure as a characteristic mechanical property and the smooth muscle cells were more oriented with uniformly higher density. Besides, the computational growth models also exhibited the accurate tendencies of growth of the cells under different external stimuli. Such models may lead to design standards for the better layered tissue structure in reconstructing of tubular organs characterized as composite materials such as intestines, ureters and arteries.}, language = {en} } @inproceedings{DuongNguyenStaat2012, author = {Duong, Minh Tuan and Nguyen, Nhu Hunyh and Staat, Manfred}, title = {Finite Element Implementation of a 3D Fung-type Model}, series = {ESMC-2012 - 8th European Solid Mechanics Conference, Graz, Austria, July 9-13, 2012}, booktitle = {ESMC-2012 - 8th European Solid Mechanics Conference, Graz, Austria, July 9-13, 2012}, publisher = {Verlag d. Technischen Universit{\"a}t Graz}, address = {Graz}, isbn = {978-3-85125-223-1}, year = {2012}, language = {en} } @inproceedings{DuongStaat2014, author = {Duong, Minh Tuan and Staat, Manfred}, title = {A face-based smoothed finite element method for hyperelastic models and tissue growth}, series = {11th World Congress on Computational Mechanics (WCCM XI) ; 5th European Conference on Computational Mechanics (ECCM V) ; 6th European Conference on Computational Fluid Dynamics (ECFD VI) ; July 20-25, 2014, Barcelona}, booktitle = {11th World Congress on Computational Mechanics (WCCM XI) ; 5th European Conference on Computational Mechanics (ECCM V) ; 6th European Conference on Computational Fluid Dynamics (ECFD VI) ; July 20-25, 2014, Barcelona}, editor = {Onate, E.}, organization = {World Congress on Computational Mechanics <11, 2014, Barcelona>}, pages = {1 -- 12}, year = {2014}, language = {en} } @inproceedings{DuongJungFrotscheretal.2016, author = {Duong, Minh Tuan and Jung, Alexander and Frotscher, Ralf and Staat, Manfred}, title = {A 3D electromechanical FEM-based model for cardiac tissue}, series = {ECCOMAS Congress 2016, VII European Congress on Computational Methods in Applied Sciences and Engineering. Crete Island, Greece, 5-10 June 2016}, booktitle = {ECCOMAS Congress 2016, VII European Congress on Computational Methods in Applied Sciences and Engineering. Crete Island, Greece, 5-10 June 2016}, editor = {Papadrakakis, M.}, pages = {13 S.}, year = {2016}, language = {en} }