@article{WiesenTippkoetterMuffleretal.2014, author = {Wiesen, Sebastian and Tippk{\"o}tter, Nils and Muffler, Kai and Suck, Kirstin and Sohling, Ulrich and Ruf, Nils and Ulber, Roland}, title = {Adsorptive Vorbehandlung von Rohglycerin f{\"u}r die 1,3-Propandiol Fermentation mit Clostridium diolis}, series = {Chemie Ingenieur Technik}, volume = {86}, journal = {Chemie Ingenieur Technik}, number = {1-2}, publisher = {Wiley-VCH}, address = {Weinheim}, doi = {10.1002/cite.201300080}, pages = {129 -- 135}, year = {2014}, abstract = {Bei der Gewinnung von Fetts{\"a}uren aus Pflanzen{\"o}len, z. B. zur Herstellung von Biopolymeren, oder bei der Biodiesel- und Seifenproduktion, f{\"a}llt Glycerin als Nebenprodukt an. Bei der Biokonversion dieses Rohstoffes zu 1,3-Propandiol wird der Produktionsorganismus Clostridium diolis durch Verunreinigungen im Rohglycerin gehemmt. Als inhibierende Substanzen konnten freie Fetts{\"a}uren identifiziert werden. Mithilfe eines adsorptiven Aufarbeitungsverfahrens ist es gelungen, die Fetts{\"a}uren zu entfernen und die Konversionseffizienz zu 1,3-Propandiol zu erh{\"o}hen.}, language = {de} } @misc{HuschyarTippkoetterUlber2015, author = {Huschyar, Al-Kaidy and Tippk{\"o}tter, Nils and Ulber, Roland}, title = {System und Verfahren zur Durchf{\"u}hrung von chemischen, biologischen oder physikalischen Reaktionen}, year = {2015}, language = {de} } @article{SiekerNeunerDimitrovaetal.2010, author = {Sieker, Tim and Neuner, Andreas and Dimitrova, Darina and Tippk{\"o}tter, Nils and Bart, Hans-J{\"o}rg and Heinzle, Elmar and Ulber, Roland}, title = {Grassilage als Rohstoff f{\"u}r die chemische Industrie}, series = {Chemie Ingenieur Technik}, volume = {82}, journal = {Chemie Ingenieur Technik}, number = {8, Special Issue: Industrielle Nutzung nachwachsender Rohstoffe}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1522-2640}, doi = {10.1002/cite.201000088}, pages = {1153 -- 1159}, year = {2010}, abstract = {Grassilage stellt einen nachwachsenden Rohstoff mit großem Potenzial dar. Neben Cellulose und Hemicellulose enth{\"a}lt sie auch organische S{\"a}uren, insbesondere Milchs{\"a}ure. In einem Bioraffinerie-Projekt wird die Milchs{\"a}ure aus der Silage isoliert und mit gentechnisch optimierten St{\"a}mmen zu L-Lysin weiterverarbeitet. Die Lignocellulose wird hydrolysiert und zu Ethanol fermentiert. Ein besonderes Augenmerk liegt auf der Integration der unterschiedlichen Prozesse sowie der einzelnen Prozessschritte zu einem Gesamtprozess, der s{\"a}mtliche Inhaltsstoffe der Silage verwertet.}, language = {de} } @misc{TippkoetterSiekerWiesenetal.2014, author = {Tippk{\"o}tter, Nils and Sieker, T. and Wiesen, S. and Duwe, A. and Roth, J. and Ulber, Roland}, title = {Simultane Saccharifizierung und Fermentierung (SSF) sowie Produktion von Aceton, Butanol, Ethanol (ABE) und Dicarbons{\"a}uren aus technischer Cellulose}, series = {Chemie Ingenieur Technik}, volume = {86}, journal = {Chemie Ingenieur Technik}, number = {9}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0009-286X}, doi = {10.1002/cite.201450297}, pages = {1518}, year = {2014}, abstract = {Technische Cellulose wurde als m{\"o}glicher Rohstoff zur fermentativen Produktbildung untersucht. Hierf{\"u}r wird Cellulose in der Lignocellulose-Bioraffinerie hergestellt und daraus Hydrolysat gewonnen. Die Pr{\"u}fung der technischen Hydrolysate als Substrate erfolgte anhand eines breiten Spektrums an Bioprodukten, von Kraftstoffen wie Ethanolund Butanol, bis zu den Dicarbons{\"a}uren Itacon- und Bernsteins{\"a}ure. Dabei werden Bakterien, Hefen und Pilze als Produktionsorganismen eingesetzt. Die einzelnen Herstellverfahren stellen unterschiedliche Anforderungen an die Substrathandhabung. Im Fall der Ethanol- und Butanol-Gewinnung kann eine simultane Saccharifizierung und Fermentierung (SSF) durchgef{\"u}hrt werden. Aufgrund der Produkttoxizit{\"a}t erfordert die Butanol-Herstellung dabei eine In-situ-Produktabtrennung durch L{\"o}semittelimpr{\"a}gnierte Partikel. Die Herstellung der beiden Dicarbons{\"a}uren unterscheidet sich in der Sensitivit{\"a}t der verwendeten Mikroorganismen gegen{\"u}ber Inhibitoren, die in Spuren im Hydrolysat enthalten sind. Die Bernteins{\"a}urebildung mit Actinobacillussuccinogenes kann mit unbehandeltem Hydrolysat erfolgen. Dagegen erfordert die Gewinnung von Itacons{\"a}ure mit A. terreus eine Detoxifizierung des Hydrolysats. Insgesamt konnte gezeigt werden, dass s{\"a}mtliche Bioraffinerie-Hydrolysate als Substrate f{\"u}r unterschiedliche Fermentationen geeignet sind.}, language = {de} } @misc{GrafSteinhofLotzetal.2009, author = {Graf, Alain-Michel and Steinhof, Rafael and Lotz, Martin and Tippk{\"o}tter, Nils and Kasper, Cornelia and Beutel, Sascha and Ulber, Roland}, title = {Downstream-Processing mit Membranadsorbern zur Isolierung nativer Proteinfraktionen aus Kartoffelfruchtwasser}, series = {Chemie Ingenieur Technik}, volume = {81}, journal = {Chemie Ingenieur Technik}, number = {3}, publisher = {Wiley}, address = {Weinheim}, doi = {10.1002/cite.200800139}, pages = {267 -- 274}, year = {2009}, abstract = {Bei der St{\"a}rkeproduktion entstehendes Kartoffelfruchtwasser besitzt mit 2 - 3 \% einen hohen Anteil an ern{\"a}hrungsphysiologisch interessanten Proteinen. Die industrielle Gewinnung dieser Proteinfracht liefert jedoch lediglich ein minderwertiges, denaturiertes Produkt. Mit Hilfe der Membranadsorber-Technologie lassen sich aus Kartoffelfruchtwasser unter milden Reaktionsbedingungen native bioaktive Proteinfraktionen gewinnen. Geeignete Trennbedingungen wurden im Labormaßstab entwickelt und in den Technikumsmaßstab {\"u}bertragen. An Anionenaustauscher-Membranadsorbern mit einer Membranfl{\"a}che von 10 000 cm2 wurde eine Patatinhaltige Fraktion (44 kDa) mit Bindungskapazit{\"a}ten von 0,37 mg/cm2 isoliert. Eine niedermolekulare Proteinfraktion mit Protease-Inhibitoren konnte durch Kationenaustauscher-Membranadsorber mit Bindungskapazit{\"a}ten von 1,00 mg/cm2 gewonnen werden. Sie ist f{\"u}r verschiedenste Applikationen in der pharmazeutischen, kosmetischen und der Nahrungsmittelindustrie interessant z. B. f{\"u}r Appetitz{\"u}gler oder muskelaufbauende Proteinpr{\"a}parate. Der Aufreinigung der nativen Proteinfraktionen durch Ultra-/Diafiltration schließt sich die Konfektionierung durch Spr{\"u}htrocknung an. Die bioanalytische Charakterisierung der Produkte belegt die Reinheit und die enzymatische Aktivit{\"a}t sowie die Abreicherung von St{\"o}rkomponenten wie Glykoalkaloide und Polyphenoloxidasen.}, language = {de} } @article{TippkoetterRoikaewUlber2007, author = {Tippk{\"o}tter, Nils and Roikaew, N. and Ulber, Roland}, title = {Nitratentfernung aus Molkekonzentrat mit biotechnologischer Regeneration der Abw{\"a}sser}, series = {Deutsche Milchwirtschaft}, volume = {58}, journal = {Deutsche Milchwirtschaft}, number = {15}, issn = {0012-0480}, pages = {540 -- 542}, year = {2007}, language = {de} } @article{SiekerUlberDimitrovaetal.2009, author = {Sieker, Tim and Ulber, Roland and Dimitrova, Darina and Bart, Hans-J{\"o}rg and Neuner, Andreas and Heinzle, Elmar and Tippk{\"o}tter, Nils}, title = {Silage : Fermentationsrohstoff f{\"u}r die chemische Industrie?}, series = {labor\&more}, journal = {labor\&more}, number = {2}, pages = {44 -- 45}, year = {2009}, abstract = {In Anbetracht des zu erwartenden R{\"u}ckgangs der Verf{\"u}gbarkeit fossiler Rohstoffe m{\"u}ssen nicht nur f{\"u}r den Energiesektor, sondern auch f{\"u}r die Herstellung industrieller Produkte alternative Rohstoffe gefunden werden. Ein Beispiel f{\"u}r einen nicht in Nahrungsmittelkonkurrenz stehenden nachwachsenden Rohstoff ist gr{\"u}ne Biomasse wie Gras und Klee. Diese lassen sich in Deutschland auf großen Fl{\"a}chen anbauen und enthalten eine Vielzahl potenzieller Substrate f{\"u}r Fermentationen.}, language = {de} } @article{SchumannRoginSchneideretal.2015, author = {Schumann, Christiane and Rogin, Sabine and Schneider, Horst and Tippk{\"o}tter, Nils and Oster, J{\"u}rgen and Kampeis, Percy}, title = {Simultane Atline-Quantifizierung von Magnetpartikeln und Mikroorganismen bei einer HGMS-Filtration}, series = {Chemie Ingenieur Technik}, volume = {87}, journal = {Chemie Ingenieur Technik}, number = {1-2}, doi = {10.1002/cite.201300158}, pages = {137 -- 149}, year = {2015}, abstract = {Es wird eine neue Atline-Messmethode vorgestellt, mit der w{\"a}hrend einer Hochgradienten-Magnetseparation (HGMS)-Filtration eine simultane Quantifizierung von Magnetpartikeln und Mikroorganismen im Filtrat vorgenommen werden kann. Dabei gelingt die Quantifizierung signifikant besser als mit bisher verwendeten Messmethoden. Mit dieser Methode ist es m{\"o}glich, die Trennleistung einer HGMS-Filtration zu bestimmen und einen Filterdurchbruch durch Konzentrationsanstiege im Bereich einiger µg L-1 von Magnetpartikeln im Filtrat fr{\"u}hzeitig zu detektieren, ohne dass nennenswerte Partikelmengen verloren gehen.}, language = {de} } @article{UlberTippkoetterBuchholzetal.2008, author = {Ulber, Roland and Tippk{\"o}tter, Nils and Buchholz, H. and Demmer, W. and Scheper, T.}, title = {Innovative Verfahren in der Molkeaufarbeitung zur Gewinnung neuer Produkte}, series = {Deutsche Milchwirtschaft}, volume = {59}, journal = {Deutsche Milchwirtschaft}, number = {19}, issn = {0012-0480}, pages = {704 -- 706}, year = {2008}, language = {de} } @inproceedings{TippkoetterSchuenemannChristmannetal.2008, author = {Tippk{\"o}tter, Nils and Sch{\"u}nemann, V. and Christmann, R. and Pasteur, A. and Schweizer, J. and Ulber, Roland}, title = {Bioaffinity Layering magnetisierbarer Mikro- und Nanopartikel}, series = {Technische Systeme f{\"u}r die Lebenswissenschaften : 14. Heiligenst{\"a}dter Kolloquium, Heilbad Heiligenstadt, 22.09. - 24.09.2008}, booktitle = {Technische Systeme f{\"u}r die Lebenswissenschaften : 14. Heiligenst{\"a}dter Kolloquium, Heilbad Heiligenstadt, 22.09. - 24.09.2008}, editor = {Beckmann, Dieter}, address = {Heiligenstadt}, isbn = {978-3-00-025695-0}, pages = {97 -- 98}, year = {2008}, language = {de} }