@article{WiesenTippkoetterMuffleretal.2014, author = {Wiesen, Sebastian and Tippk{\"o}tter, Nils and Muffler, Kai and Suck, Kirstin and Sohling, Ulrich and Ruf, Nils and Ulber, Roland}, title = {Adsorptive Vorbehandlung von Rohglycerin f{\"u}r die 1,3-Propandiol Fermentation mit Clostridium diolis}, series = {Chemie Ingenieur Technik}, volume = {86}, journal = {Chemie Ingenieur Technik}, number = {1-2}, publisher = {Wiley-VCH}, address = {Weinheim}, doi = {10.1002/cite.201300080}, pages = {129 -- 135}, year = {2014}, abstract = {Bei der Gewinnung von Fetts{\"a}uren aus Pflanzen{\"o}len, z. B. zur Herstellung von Biopolymeren, oder bei der Biodiesel- und Seifenproduktion, f{\"a}llt Glycerin als Nebenprodukt an. Bei der Biokonversion dieses Rohstoffes zu 1,3-Propandiol wird der Produktionsorganismus Clostridium diolis durch Verunreinigungen im Rohglycerin gehemmt. Als inhibierende Substanzen konnten freie Fetts{\"a}uren identifiziert werden. Mithilfe eines adsorptiven Aufarbeitungsverfahrens ist es gelungen, die Fetts{\"a}uren zu entfernen und die Konversionseffizienz zu 1,3-Propandiol zu erh{\"o}hen.}, language = {de} } @article{PasteurTippkoetterKampeisetal.2014, author = {Pasteur, Aline and Tippk{\"o}tter, Nils and Kampeis, Percy and Ulber, Roland}, title = {Optimization of high gradient magnetic separation filter units for the purification of fermentation products}, series = {IEEE TRANSACTIONS ON MAGNETICS}, volume = {50}, journal = {IEEE TRANSACTIONS ON MAGNETICS}, number = {10}, publisher = {IEEE}, address = {New York, NY}, issn = {0018-9464}, doi = {10.1109/TMAG.2014.2325535}, pages = {Artikel 5000607}, year = {2014}, abstract = {High gradient magnetic separation (HGMS) has been established since the early 1970s. A more recent application of these systems is the use in bioprocesses. To integrate the HGMS in a fermentation process, it is necessary to optimize the separation matrix with regard to the magnetic separation characteristics and permeability of the non-magnetizable components of the fermentation broth. As part of the work presented here, a combined fluidic and magnetic force finite element model simulation was created using the software COMSOL Multiphysics and compared with separation experiments. Finally, as optimal lattice orientation of the separation matrix, a transversal rhombohedral arrangement was defined. The high suitability of the new filter matrix has been verified by separation experiments.}, language = {en} } @article{TippkoetterWollnySucketal.2014, author = {Tippk{\"o}tter, Nils and Wollny, Steffen and Suck, Kirstin and Sohling, Ulrich and Ruf, Friedrich and Ulber, Roland}, title = {Recycling of spent oil bleaching earth as source of glycerol for the anaerobic production of acetone, butanol, and ethanol with Clostridium diolis and lipolytic Clostridium lundense}, series = {Engineering in Life Sciences}, volume = {14}, journal = {Engineering in Life Sciences}, number = {4}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1618-2863}, doi = {10.1002/elsc.201300113}, pages = {425 -- 432}, year = {2014}, abstract = {A major part of edible oil is subjected to bleaching procedures, primarily with minerals applied as adsorbers. Their recycling is currently done either by regaining the oil via organic solvent extraction or by using the spent bleaching earth (SBE) as additive for animal feed, etc. As a new method, the reutilization of the by-product SBE for the microbiologic formation of acetone, butanol, and ethanol (ABE) is presented as proof-of-concept. The SBE was taken from a palm oil cleaning process. The recycling concept is based on the application of lipolytic clostridia strains. Due to considerably long fermentation times, co-fermentation with Candida rugosa and enzymatic hydrolyses of the bound oil with a subsequent clostridia fermentation are shown as alternative routes. Anaerobic fermentations under comparison of different clostridia strains were performed with glycerol media, enzymatically hydrolyzed palm oil and SBE. Solutes, side product compositions and productivities were quantified via HPLC. A successful production of ABE solutes from SBE has been done with a yield of 0.15 g butanol per gram of bound glycerol. Thus, the biotechnological recycling of the waste stream is possible in principle. Inhibition of the substrate suspension has been observed. A chromatographic ion-exchange of substrates increased the biomass concentration.}, language = {en} } @article{AlKaidyDuweHusteretal.2014, author = {Al-Kaidy, Huschyar and Duwe, Anna and Huster, Manuel and Muffler, Kai and Schlegel, Christin and Sieker, Tim and Stadtm{\"u}ller, Ralf and Tippk{\"o}tter, Nils and Ulber, Roland}, title = {Biotechnologie und Bioverfahrenstechnik - Vom ersten Ullmanns Artikel bis hin zu aktuellen Forschungsthemen}, series = {Chemie Ingenieur Technik}, volume = {86}, journal = {Chemie Ingenieur Technik}, number = {12}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0009-286X}, doi = {10.1002/cite.201400083}, pages = {2215 -- 2225}, year = {2014}, abstract = {Biotechnologie und die mit ihr verbundenen technischen Prozesse pr{\"a}gen seit Jahrtausenden die Entwicklung der Menschheit. Ausgehend von empirischen Verfahren, insbesondere zur Herstellung von Lebensmitteln und t{\"a}glichen Gebrauchsg{\"u}tern, haben sich diese Disziplinen zu einem der innovativsten Zukunftsfelder entwickelt. Durch das immer detailliertere Verst{\"a}ndnis zellul{\"a}rer Vorg{\"a}nge k{\"o}nnen mittlerweile Produktionsst{\"a}mme gezielt optimiert werden. Im Zusammenspiel mit moderner Prozesstechnik k{\"o}nnen so eine Vielzahl von Bulk- und Feinchemikalien sowie Pharmazeutika effizient hergestellt werden. In diesem Artikel werden exemplarisch einige der aktuellen Trends vorgestellt.}, language = {de} } @article{ThielTippkoetterSucketal.2013, author = {Thiel, Alexander and Tippk{\"o}tter, Nils and Suck, Kirstin and Sohling, Ulrich and Ruf, Friedrich and Ulber, Roland}, title = {New zeolite adsorbents for downstream processing of polyphenols from renewable resources}, series = {Engineering in Life Sciences}, volume = {13}, journal = {Engineering in Life Sciences}, number = {3}, publisher = {Wiley}, address = {Weinheim}, doi = {10.1002/elsc.201200188}, pages = {239 -- 246}, year = {2013}, abstract = {Commercial materials with polyvinylpolypyrrolidone and polymeric amberlites (XAD7HP, XAD16) are commonly used for the adsorptive downstream processing of polyphenols from renewable resources. In this study, beta-zeolite-based adsorbent systems were examined, and their properties were compared to organic resins. Batch adsorption experiments were conducted with synthetic solutions of major polyphenols. Adsorption isotherms and desorption characteristics of individual adsorbent were determined based on these results. Maximum adsorption capacities were calculated using the Langmuir model. For example, the zeolites had capacities up to 203.2 mg/g for ferulic acid. To extend these results to a complex system, additional experiments were performed on rapeseed meal and wheat seed extracts as representative renewable resources. HPLC analysis showed that with 7.5\% w/v, which is regarded as the optimum amount of zeolites, zeolites A and B could bind 100\% of the major polyphenols as well as release polyphenols at high yields. Additionally, regeneration experiments were performed with isopropyl alcohol at 99°C to evaluate how zeolites regenerate under mild conditions. The results showed only a negligible loss of adsorption capacity and no loss of desorption capacity. In summary, it was concluded that beta-zeolites were promising adsorbents for developing new processes to isolate polyphenols from renewable resources.}, language = {en} } @article{TippkoetterAlKaidyWollnyetal.2013, author = {Tippk{\"o}tter, Nils and Al-Kaidy, Huschyar and Wollny, Steffen and Ulber, Roland}, title = {Functionalized magnetizable particles for downstream processing in single-use systems}, series = {Chemie Ingenieur Technik}, volume = {85}, journal = {Chemie Ingenieur Technik}, number = {1-2: Special Issue: Single-Use Technology}, publisher = {Wiley}, address = {Weinheim}, doi = {10.1002/cite.201200130}, pages = {76 -- 86}, year = {2013}, abstract = {Biotechnological downstream processing is usually an elaborate procedure, requiring a multitude of unit operations to isolate the target component. Besides the disadvantageous space-time yield, the risks of cross-contaminations and product loss grow fast with the complexity of the isolation procedure. A significant reduction of unit operations can be achieved by application of magnetic particles, especially if these are functionalized with affinity ligands. As magnetic susceptible materials are highly uncommon in biotechnological processes, target binding and selective separation of such particles from fermentation or reactions broths can be done in a single step. Since the magnetizable particles can be produced from iron salts and low priced polymers, a single-use implementation of these systems is highly conceivable. In this article, the principles of magnetizable particles, their synthesis and functionalization are explained. Furthermore, applications in the area of reaction engineering, microfluidics and downstream processing are discussed focusing on established single-use technologies and development potential.}, language = {en} } @article{SiekerNeunerDimitrovaetal.2011, author = {Sieker, Tim and Neuner, Andreas and Dimitrova, Darina and Tippk{\"o}tter, Nils and Muffler, Kai and Bart, Hans-J{\"o}rg and Heinzle, Elmar and Ulber, Roland}, title = {Ethanol production from grass silage by simultaneous pretreatment, saccharification and fermentation: First steps in the process development}, series = {Engineering in Life Sciences}, volume = {11}, journal = {Engineering in Life Sciences}, number = {4}, publisher = {Wiley}, address = {Weinheim}, doi = {10.1002/elsc.201000160}, pages = {436 -- 442}, year = {2011}, abstract = {Grass silage provides a great potential as renewable feedstock. Two fractions of the grass silage, a press juice and the fiber fraction, were evaluated for their possible use for bioethanol production. Direct production of ethanol from press juice is not possible due to high concentrations of organic acids. For the fiber fraction, alkaline peroxide or enzymatic pretreatment was used, which removes the phenolic acids in the cell wall. In this study, we demonstrate the possibility to integrate the enzymatic pretreatment with a simultaneous saccharification and fermentation to achieve ethanol production from grass silage in a one-process step. Achieved yields were about 53 g ethanol per kg silage with the alkaline peroxide pretreatment and 91 g/kg with the enzymatic pretreatment at concentrations of 8.5 and 14.6 g/L, respectively. Furthermore, it was shown that additional supplementation of the fermentation medium with vitamins, trace elements and nutrient salts is not necessary when the press juice is directly used in the fermentation step.}, language = {en} } @article{PothMonzonTippkoetteretal.2011, author = {Poth, Sebastian and Monzon, Magaly and Tippk{\"o}tter, Nils and Ulber, Roland}, title = {Lignocellulosic biorefinery: Process integration of hydrolysis and fermentation (SSF process)}, series = {Holzforschung}, volume = {65}, journal = {Holzforschung}, number = {5}, publisher = {De Gruyter}, address = {Berlin}, pages = {633 -- 637}, year = {2011}, abstract = {The aim of the present work is the process integration and the optimization of the enzymatic hydrolysis of wood and the following fermentation of the products to ethanol. The substrate is a fiber fraction obtained by organosolv pre-treatment of beech wood. For the ethanol production, a co-fermentation by two different yeasts (Saccharomyces cerevisiae and Pachysolen tannophilus) was carried out to convert glucose as well as xylose. Two approaches has been followed: 1. A two step process, in which the hydrolysis of the fiber fraction and the fermentation to product are separated from each other. 2. A process, in which the hydrolysis and the fermentation are carried out in one single process step as simultaneous saccharification and fermentation (SSF). Following the first approach, a yield of about 0.15 g ethanol per gram substrate can be reached. Based on the SSF, one process step can be saved, and additionally, the gained yield can be raised up to 0.3 g ethanol per gram substrate.}, language = {en} } @article{RoeschKratzHeringetal.2016, author = {R{\"o}sch, C. and Kratz, F. and Hering, T. and Trautmann, S. and Umanskaya, N. and Tippk{\"o}tter, Nils and M{\"u}ller-Renno, C.M. and Ulber, R. and Hannig, M. and Ziegler, C.}, title = {Albumin-lysozyme interactions: cooperative adsorption on titanium and enzymatic activity}, series = {Colloids and Surfaces B: Biointerfaces}, volume = {149}, journal = {Colloids and Surfaces B: Biointerfaces}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.colsurfb.2016.09.048}, pages = {115 -- 121}, year = {2016}, abstract = {The interplay of albumin (BSA) and lysozyme (LYZ) adsorbed simultaneously on titanium was analyzed by gel electrophoresis and BCA assay. It was found that BSA and lysozyme adsorb cooperatively. Additionally, the isoelectric point of the respective protein influences the adsorption. Also, the enzymatic activity of lysozyme and amylase (AMY) in mixtures with BSA was considered with respect to a possible influence of protein-protein interaction on enzyme activity. Indeed, an increase of lysozyme activity in the presence of BSA could be observed. In contrast, BSA does not influence the activity of amylase.}, language = {en} } @article{RothTippkoetter2016, author = {Roth, Jasmine and Tippk{\"o}tter, Nils}, title = {Evaluation of lignocellulosic material for butanol production using enzymatic hydrolysate medium}, series = {Cellulose Chemistry and Technology}, volume = {50}, journal = {Cellulose Chemistry and Technology}, number = {3-4}, publisher = {Editura Academiei Romane}, address = {Bukarest}, pages = {405 -- 410}, year = {2016}, abstract = {Butanol is a promising gasoline additive and platform chemical that can be readily produced via acetone-butanolethanol (ABE) fermentation from pretreated lignocellulosic materials. This article examines lignocellulosic material from beech wood for ABE fermentation, using Clostridium acetobutylicum. First, the utilization of both C₅₋ (xylose) and C₆₋ (glucose) sugars as sole carbon source was investigated in static cultivation, using serum bottles and synthetic medium. The utilization of pentose sugar resulted in a solvent yield of 0.231 g·g_sugar⁻¹, compared to 0.262 g·g_sugar⁻¹ using hexose. Then, the Organosolv pretreated crude cellulose fibers (CF) were enzymatically decomposed, and the resulting hydrolysate medium was analyzed for inhibiting compounds (furans, organic acids, phenolics) and treated with ionexchangers for detoxification. Batch fermentation in a bioreactor using CF hydrolysate medium resulted in a total solvent yield of 0.20 gABE·g_sugar⁻¹.}, language = {en} } @article{AlKaidyTippkoetter2016, author = {Al-Kaidy, Huschyar and Tippk{\"o}tter, Nils}, title = {Superparamagnetic hydrophobic particles as shell material for digital microfluidic droplets and proof-of-principle reaction assessments with immobilized laccase}, series = {Engineering in Life Sciences}, volume = {16}, journal = {Engineering in Life Sciences}, number = {3}, publisher = {Wiley-VCH}, address = {Weinheim}, doi = {10.1002/elsc.201400124}, pages = {222 -- 230}, year = {2016}, abstract = {In the field of biotechnology and molecular biology, the use of small liquid volumes has significant advantages. In particular, screening and optimization runs with acceptable amounts of expensive and hardly available catalysts, reagents, or biomolecules are feasible with microfluidic technologies. The presented new microfluidic system is based on the inclusion of small liquid volumes by a protective shell of magnetizable microparticles. Hereby, discrete aqueous microreactor drops with volumes of 1-30 μL can be formed on a simple planar surface. A digital movement and manipulation of the microreactor is performed by overlapping magnetic forces. The magnetic forces are generated by an electrical coil matrix positioned below a glass plate. With the new platform technology, several discrete reaction compartments can be moved simultaneously on one surface. Due to the magnetic fields, the reactors can even be merged to initiate reactions by mixing or positioned above surface-immobilized catalysts and then opened by magnetic force. Comparative synthesis routes of the magnetizable shell particles and superhydrophobic glass slides including their performance and stability with the reaction platform are described. The influence of diffusive mass transport during the catalyzed reaction is discussed by evaluation finite element model of the microreactor. Furthermore, a first model dye reaction of the enzyme laccase has been established.}, language = {en} } @article{AlKaidyDuweHusteretal.2015, author = {Al-Kaidy, Huschyar and Duwe, Anna and Huster, Manuel and Muffler, Kai and Schlegel, Christin and Tim, Sieker and Stadtm{\"u}ller, Ralf and Tippk{\"o}tter, Nils and Ulber, Roland}, title = {Biotechnology and bioprocess engineering - from the first ullmann's article to recent trends}, series = {ChemBioEng Reviews}, volume = {2}, journal = {ChemBioEng Reviews}, number = {3}, publisher = {Wiley}, address = {Weinheim}, doi = {10.1002/cben.201500008}, pages = {175 -- 184}, year = {2015}, abstract = {For several thousand years, biotechnology and its associated technical processes have had a great impact on the development of mankind. Based on empirical methods, in particular for the production of foodstuffs and daily commodities, these disciplines have become one of the most innovative future issues. Due to the increasing detailed understanding of cellular processes, production strains can now be optimized. In combination with modern bioprocesses, a variety of bulk and fine chemicals as well as pharmaceuticals can be produced efficiently. In this article, some of the current trends in biotechnology are discussed.}, language = {en} } @article{ThielMufflerTippkoetteretal.2015, author = {Thiel, Alexander and Muffler, Kai and Tippk{\"o}tter, Nils and Suck, Kirstin and Sohling, Ulrich and Hruschka, Steffen M. and Ulber, Roland}, title = {A novel integrated downstream processing approach to recover sinapic acid, phytic acid and proteins from rapeseed meal}, series = {Journal of Chemical Technology and Biotechnology}, volume = {90}, journal = {Journal of Chemical Technology and Biotechnology}, number = {11}, publisher = {Wiley}, address = {Weinheim}, doi = {10.1002/jctb.4664}, pages = {1999 -- 2006}, year = {2015}, abstract = {BACKGROUND Currently, several techniques exist for the downstream processing of protein, phytic acid and sinapic acid from rapeseed and rapeseed meal, but no technique has been developed to separate all of the components in one process. In this work, two new downstream processing strategies focusing on recovering sinapic acid, phytic acid and protein from rapeseed meal were established. RESULTS The sinapic acid content was enhanced by a factor of 4.5 with one method and 5.1 with the other. The isolation of sinapic acid was accomplished using a zeolite-based adsorbent with high adsorptive and optimal desorption characteristics. Phytic acid was isolated using the anion-exchange resin Purolite A200®. In addition, the processes resulted in two separated protein fractions. The ratios of globulin and albumin ratio to the total protein were 59.2\% and 40.1\%, respectively. The steps were then combined in two different ways: (a) a 'sequential process' using the zeolite and A200 in batch processes; and (b) a 'parallel process' using only A200 in a chromatographic system to separate all of the compounds. CONCLUSIONS It can be concluded that isolation of all three components was possible in both processes. These could enhance the added value of current processes using rapeseed meal as a protein source. © 2015 Society of Chemical Industry}, language = {en} } @article{SchumannRoginSchneideretal.2015, author = {Schumann, Christiane and Rogin, Sabine and Schneider, Horst and Tippk{\"o}tter, Nils and Oster, J{\"u}rgen and Kampeis, Percy}, title = {Simultane Atline-Quantifizierung von Magnetpartikeln und Mikroorganismen bei einer HGMS-Filtration}, series = {Chemie Ingenieur Technik}, volume = {87}, journal = {Chemie Ingenieur Technik}, number = {1-2}, doi = {10.1002/cite.201300158}, pages = {137 -- 149}, year = {2015}, abstract = {Es wird eine neue Atline-Messmethode vorgestellt, mit der w{\"a}hrend einer Hochgradienten-Magnetseparation (HGMS)-Filtration eine simultane Quantifizierung von Magnetpartikeln und Mikroorganismen im Filtrat vorgenommen werden kann. Dabei gelingt die Quantifizierung signifikant besser als mit bisher verwendeten Messmethoden. Mit dieser Methode ist es m{\"o}glich, die Trennleistung einer HGMS-Filtration zu bestimmen und einen Filterdurchbruch durch Konzentrationsanstiege im Bereich einiger µg L-1 von Magnetpartikeln im Filtrat fr{\"u}hzeitig zu detektieren, ohne dass nennenswerte Partikelmengen verloren gehen.}, language = {de} } @article{ThielMufflerTippkoetteretal.2015, author = {Thiel, Alexander and Muffler, Kai and Tippk{\"o}tter, Nils and Suck, Kirstin and Sohling, Ulrich and Ruf, Friedrich and Ulber, Roland}, title = {Aufarbeitung von Polyphenolen aus Weizen mittels Zeolithen am Beispiel der Ferulas{\"a}ure}, series = {Chemie IngenieurTechnik}, volume = {87}, journal = {Chemie IngenieurTechnik}, number = {1-2}, publisher = {Wiley}, address = {Weinheim}, doi = {10.1002/cite.201400031}, pages = {128 -- 136}, year = {2015}, abstract = {Aufarbeitung von Polyphenolen aus Weizenmittels Zeolithen am Beispiel der Ferulasa¨ ureAlexander Thiel1, Kai Muffler1, Nils Tippko¨ tter1, Kirstin Suck2, Ulrich Sohling2, Friedrich Ruf3und Roland Ulber1,*DOI: 10.1002/cite.201400031Bei der Ferulasa¨ure handelt es sich um einen Wertstoff, der aus Weizen gewonnen und in der Lebensmittel- und Pharma-industrie eingesetzt werden kann. Der Einsatz von Weizen als nachwachsende Rohstoffquelle ist allerdings nur dann wirt-schaftlich durchfu¨hrbar, wenn eine Prozessintegration in die bestehenden industriellen Verfahren gewa¨hrleistet oder einedirekte Konkurrenz zur Mehl- und Sta¨rkeindustrie vermieden werden kann. In diesem Artikel wird ein Verfahren aufge-zeigt, welches hohe Ausbeuten ermo¨glicht und eine Konkurrenz zu bestehenden Verwertungspfaden vermeidet.}, language = {de} } @article{WiesenTippkoetterMuffleretal.2015, author = {Wiesen, Sebastian and Tippk{\"o}tter, Nils and Muffler, Kai and Suck, Kirstin and Sohling, Ulrich and Ruf, Friedrich and Ulber, Roland}, title = {Adsorption of fatty acids to layered double hydroxides in aqueous systems}, series = {Adsorption}, volume = {21}, journal = {Adsorption}, number = {6-7}, publisher = {Springer}, address = {Berlin}, pages = {459 -- 466}, year = {2015}, abstract = {Due to their anion exchange characteristics, layered double hydroxides (LDHs) are suitable for the detoxification of aqueous, fatty acid containing fermentation substrates. The aim of this study is to examine the adsorption mechanism, using crude glycerol from plant oil esterification as a model system. Changes in the intercalation structure in relation to the amount of fatty acids adsorbed are monitored by X-ray diffraction and infra-red spectroscopy. Additionally, calcination of LDH is investigated in order to increase the binding capacity for fatty acids. Our data propose that, at ambient temperature, fatty acids can be bound to the hydrotalcite by adsorption or in addition by intercalation, depending on fatty acid concentration. The adsorption of fatty acids from crude glycerol shows a BET-like behavior. Above a fatty acid concentration of 3.5 g L-1, intercalation of fatty acids can be shown by the appearance of an increased interlayer spacing. This observation suggests a two phase adsorption process. Calcination of LDHs allows increasing the binding capacity for fatty acids by more than six times, mainly by reduction of structural CO32-.}, language = {en} } @article{TippkoetterDuweWiesenetal.2014, author = {Tippk{\"o}tter, Nils and Duwe, Anna-Maria and Wiesen, Sebastian and Sieker, Tim and Ulber, Roland}, title = {Enzymatic hydrolysis of beech wood lignocellulose at high solid contents and its utilization as substrate for the production of biobutanol and dicarboxylic acids}, series = {Bioresource Technology}, volume = {167}, journal = {Bioresource Technology}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.biortech.2014.06.052}, pages = {447 -- 455}, year = {2014}, abstract = {The development of a cost-effective hydrolysis for crude cellulose is an essential part of biorefinery developments. To establish such high solid hydrolysis, a new solid state reactor with static mixing is used. However, concentrations >10\% (w/w) cause a rate and yield reduction of enzymatic hydrolysis. By optimizing the synergetic activity of cellulolytic enzymes at solid concentrations of 9\%, 17\% and 23\% (w/w) of crude Organosolv cellulose, glucose concentrations of 57, 113 and 152 g L⁻¹ are reached. However, the glucose yield decreases from 0.81 to 0.72gg⁻¹ at 17\% (w/w). Optimal conditions for hydrolysis scale-up under minimal enzyme addition are identified. As result, at 23\% (w/w) crude cellulose the glucose yield increases from 0.29 to 0.49gg⁻¹. As proof of its applicability, biobutanol, succinic and itaconic acid are produced with the crude hydrolysate. The potential of the substrate is proven e.g. by a high butanol yield of 0.33gg⁻¹.}, language = {en} } @article{GrafSteinhofLotzetal.2009, author = {Graf, Alain-Michel and Steinhof, Rafael and Lotz, Martin and Tippk{\"o}tter, Nils and Kasper, Cornelia and Beutel, Sascha and Ulber, Roland}, title = {Downstream-Processing mit Membranadsorbern zur Isolierung nativer Proteinfraktionen aus Kartoffelfruchtwasser}, series = {Chemie Ingenieur Technik}, volume = {81}, journal = {Chemie Ingenieur Technik}, number = {3}, publisher = {Wiley}, address = {Weinheim}, doi = {10.1002/cite.200800139}, pages = {267 -- 274}, year = {2009}, abstract = {Bei der St{\"a}rkeproduktion entstehendes Kartoffelfruchtwasser besitzt mit 2 - 3 \% einen hohen Anteil an ern{\"a}hrungsphysiologisch interessanten Proteinen. Die industrielle Gewinnung dieser Proteinfracht liefert jedoch lediglich ein minderwertiges, denaturiertes Produkt. Mit Hilfe der Membranadsorber-Technologie lassen sich aus Kartoffelfruchtwasser unter milden Reaktionsbedingungen native bioaktive Proteinfraktionen gewinnen. Geeignete Trennbedingungen wurden im Labormaßstab entwickelt und in den Technikumsmaßstab {\"u}bertragen. An Anionenaustauscher-Membranadsorbern mit einer Membranfl{\"a}che von 10 000 cm2 wurde eine Patatinhaltige Fraktion (44 kDa) mit Bindungskapazit{\"a}ten von 0,37 mg/cm2 isoliert. Eine niedermolekulare Proteinfraktion mit Protease-Inhibitoren konnte durch Kationenaustauscher-Membranadsorber mit Bindungskapazit{\"a}ten von 1,00 mg/cm2 gewonnen werden. Sie ist f{\"u}r verschiedenste Applikationen in der pharmazeutischen, kosmetischen und der Nahrungsmittelindustrie interessant z. B. f{\"u}r Appetitz{\"u}gler oder muskelaufbauende Proteinpr{\"a}parate. Der Aufreinigung der nativen Proteinfraktionen durch Ultra-/Diafiltration schließt sich die Konfektionierung durch Spr{\"u}htrocknung an. Die bioanalytische Charakterisierung der Produkte belegt die Reinheit und die enzymatische Aktivit{\"a}t sowie die Abreicherung von St{\"o}rkomponenten wie Glykoalkaloide und Polyphenoloxidasen.}, language = {de} } @article{TippkoetterDeterdingUlber2008, author = {Tippk{\"o}tter, Nils and Deterding, A. and Ulber, Roland}, title = {Determination of acetic acid in fermentation broth by gas-diffusion technique}, series = {Engineering in Life Sciences}, volume = {8}, journal = {Engineering in Life Sciences}, number = {1, Special Issue: Technical Systems for the Use in Life Sciences}, doi = {10.1002/elsc.200820227}, pages = {62 -- 67}, year = {2008}, abstract = {Due to the interfering effects of acetic acid in many fermentation processes, a gas-diffusion technique was developed for the online determination of acetic acid. The measurements were accomplished with a flow diffusion analysis (FDA) unit from the TRACE Analytics GmbH, Braunschweig, Germany. The diffusion analysis is based on the UV-absorbance of acetic acid at 205 nm. The measurement was achieved by the separation of an acceptor and a carrier stream (acidified fermentation broth) using a gas permeable polytetrafluoroethylene (PTFE) membrane, whereby broth constituents that would otherwise disturb the UV-measurement of acetic acid, are held back efficiently. Merely, the fermentation by-products, e.g. formic acid, is capable of diffusing through the membrane. While formic acid can disturb the measurement, carbon dioxide does not absorb at 205 nm. The method operates with time-dependent sample enrichment. During the analysis, a small volume of the acceptor stream is stopped for a defined time interval in the acceptor chamber. During this period, the gaseous acetic acid diffuses through the membrane and is enriched in the acceptor chamber. Subsequently after the enrichment, the acceptor stream flows through a UV-detector. The intensity of the signal is proportional to the acetic acid concentration. Online measurements in bioreactors via a sterile filtration probe have been accomplished. A linear calibration in the range of 0.5-5.0 g/L acetic acid with a relative standard deviation of <5 \% was obtained. A sampling rate of 8 samples per hour was possible. The system was applied for the determination of acetic acid in E. coli fermentation broth. The instrument is easy to clean, very user-friendly and does not require any toxic or expensive reagents.}, language = {en} } @article{KapplerTanudyayaSchmittTippkoetteretal.2007, author = {Kappler-Tanudyaya, Nathalie and Schmitt, Heike and Tippk{\"o}tter, Nils and Meyer, Lina and Lenzen, Sigurd and Ulber, Roland}, title = {Combination of biotransformation and chromatography for the isolation and purification of mannoheptulose}, series = {Biotechnology Journal}, volume = {2}, journal = {Biotechnology Journal}, number = {6}, issn = {1860-7314}, doi = {10.1002/biot.200700004}, pages = {692 -- 699}, year = {2007}, abstract = {Mannoheptulose is a seven-carbon sugar. It is an inhibitor of glucose-induced insulin secretion due to its ability to selectively inhibit the enzyme glucokinase. An improved procedure for mannoheptulose isolation from avocados is described in this study (based upon the original method by La Forge). The study focuses on the combination of biotransformation and downstream processing (preparative chromatography) as an efficient method to produce a pure extract of mannoheptulose. The experiments were divided into two major phases. In the first phase, several methods and parameters were compared to optimize the mannoheptulose extraction with respect to efficiency and purity. In the second phase, a mass balance of mannoheptulose over the whole extraction process was undertaken to estimate the yield and efficiency of the total extraction process. The combination of biotransformation and preparative chromatography allowed the production of a pure mannoheptulose extract. In a biological test, the sugar inhibited the glucokinase enzyme activity efficiently.}, language = {en} }