@article{PoghossianAbouzarRazavietal.2009, author = {Poghossian, Arshak and Abouzar, Maryam H. and Razavi, A. and B{\"a}cker, Matthias and Bijnens, N. and Williams, O. A. and Haenen, K. and Moritz, W. and Wagner, P. and Sch{\"o}ning, Michael Josef}, title = {Nanocrystalline-diamond thin films with high pH and penicillin sensitivity prepared on a capacitive Si-SiO2 structure}, series = {Electrochimica Acta. 54 (2009), H. 25}, journal = {Electrochimica Acta. 54 (2009), H. 25}, isbn = {0013-4686}, pages = {5981 -- 5985}, year = {2009}, language = {en} } @article{GrinsvenBonGrietenetal.2011, author = {Grinsven, B. van and Bon, N. vanden and Grieten, L. and Murib, M. and Janssen, S. D. and Haenen, K. and Schneider, E. and Ingebrandt, E. and Sch{\"o}ning, Michael Josef and Vermeeren, V. and Ameloot, M. and Michiels, L. and Thoelen, R. and Ceuninck, W. de and Wagner, P.}, title = {Rapid assessment of the stability of DNA duplexes by impedimetric real-time monitoring of chemically induced denaturation}, series = {Lab on a Chip}, volume = {11}, journal = {Lab on a Chip}, number = {9}, publisher = {Royal Society of Chemistry (RSC)}, address = {Cambridge}, isbn = {1473-0197}, pages = {1656 -- 1663}, year = {2011}, language = {en} } @article{BaeckerDellePoghossianetal.2011, author = {B{\"a}cker, Matthias and Delle, L. and Poghossian, Arshak and Biselli, Manfred and Zang, Werner and Wagner, P. and Sch{\"o}ning, Michael Josef}, title = {Electrochemical sensor array for bioprocess monitoring}, series = {Electrochimica Acta (2011)}, volume = {56}, journal = {Electrochimica Acta (2011)}, number = {26}, publisher = {Elsevier}, address = {Amsterdam}, pages = {9673 -- 9678}, year = {2011}, language = {en} } @inproceedings{ReisertGeisslerFloerkeetal.2012, author = {Reisert, Steffen and Geissler, H. and Fl{\"o}rke, R. and Weiler, C. and Wagner, P. and Sch{\"o}ning, Michael Josef}, title = {Characterisation of aseptic sterilisation processes using an electronic nose}, series = {Nanoscale Science and Technology (NS\&T´12) : Proceedings Book Humboldt Kolleg ; Tunisia, 17-19 March, 2012}, booktitle = {Nanoscale Science and Technology (NS\&T´12) : Proceedings Book Humboldt Kolleg ; Tunisia, 17-19 March, 2012}, editor = {Abdelghani, Adnane and Sch{\"o}ning, Michael Josef}, pages = {45 -- 45}, year = {2012}, language = {en} } @inproceedings{BohrnStuetzFleischeretal.2012, author = {Bohrn, U. and St{\"u}tz, E. and Fleischer, M. and Sch{\"o}ning, Michael Josef and Wagner, P.}, title = {Towards a paradigm change - mammalian cells as sensitive biosensor layers for the detection of unexpected toxic substances in air}, series = {Nanoscale Science and Technology (NS\&T´12) : Proceedings Book Humboldt Kolleg ; Tunisia, 17-19 March, 2012}, booktitle = {Nanoscale Science and Technology (NS\&T´12) : Proceedings Book Humboldt Kolleg ; Tunisia, 17-19 March, 2012}, editor = {Abdelghani, Adnane and Sch{\"o}ning, Michael Josef}, pages = {44 -- 44}, year = {2012}, language = {en} } @article{BaeckerRaueSchusseretal.2012, author = {B{\"a}cker, Matthias and Raue, Markus and Schusser, Sebastian and Jeitner, C. and Breuer, L. and Wagner, P. and Poghossian, Arshak and F{\"o}rster, Arnold and Mang, Thomas and Sch{\"o}ning, Michael Josef}, title = {Microfluidic chip with integrated microvalves based on temperature- and pH-responsive hydrogel thin films}, series = {Physica Status Solidi (a)}, volume = {209}, journal = {Physica Status Solidi (a)}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201100763}, pages = {839 -- 845}, year = {2012}, abstract = {Two types of microvalves based on temperature-responsive poly(N-isopropylacrylamide) (PNIPAAm) and pH-responsive poly(sodium acrylate) (PSA) hydrogel films have been developed and tested. The PNIPAAm and PSA hydrogel films were prepared by means of in situ photopolymerization directly inside the fluidic channel of a microfluidic chip fabricated by combining Si and SU-8 technologies. The swelling/shrinking properties and height changes of the PNIPAAm and PSA films inside the fluidic channel were studied at temperatures of deionized water from 14 to 36 °C and different pH values (pH 3-12) of Titrisol buffer, respectively. Additionally, in separate experiments, the lower critical solution temperature (LCST) of the PNIPAAm hydrogel was investigated by means of a differential scanning calorimetry (DSC) and a surface plasmon resonance (SPR) method. Mass-flow measurements have shown the feasibility of the prepared hydrogel films to work as an on-chip integrated temperature- or pH-responsive microvalve capable to switch the flow channel on/off.}, language = {en} } @article{SchusserMenzelBaeckeretal.2013, author = {Schusser, Sebastian and Menzel, S. and B{\"a}cker, Matthias and Leinhos, Marcel and Poghossian, Arshak and Wagner, P. and Sch{\"o}ning, Michael Josef}, title = {Degradation of thin poly(lactic acid) films: characterization by capacitance-voltage, atomic force microscopy, scanning electron microscopy and contact-angle measurements}, series = {Electrochimica Acta}, volume = {Vol. 113}, journal = {Electrochimica Acta}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-3859 (E-Journal); 0013-4686 (Print)}, pages = {779 -- 784}, year = {2013}, language = {en} } @article{KloockMorenoBratovetal.2006, author = {Kloock, Joachim P. and Moreno, Lia and Bratov, A. and Huachupoma, S. and Xu, J. and Wagner, Torsten and Yoshinobu, T. and Ermolenko, Y. and Vlasov, Y. G. and Sch{\"o}ning, Michael Josef}, title = {PLD-prepared cadmium sensors based on chalcogenide glasses —ISFET, LAPS and \&\#956;ISE semiconductor structures}, series = {Sensors and Actuators B: Chemical. 118 (2006), H. 1-2}, journal = {Sensors and Actuators B: Chemical. 118 (2006), H. 1-2}, isbn = {0925-4005}, pages = {149 -- 155}, year = {2006}, language = {en} } @article{WagnerRaoKloocketal.2006, author = {Wagner, Torsten and Rao, C. and Kloock, Joachim P. and Yoshinobu, T. and Otto, R. and Keusgen, M. and Sch{\"o}ning, Michael Josef}, title = {"LAPS Card"—A novel chip card-based light-addressable potentiometric sensor (LAPS)}, series = {Sensors and Actuators B: Chemical. 118 (2006), H. 1-2}, journal = {Sensors and Actuators B: Chemical. 118 (2006), H. 1-2}, isbn = {0925-4005}, pages = {33 -- 40}, year = {2006}, language = {en} } @article{BohrnStuetzFuchsetal.2012, author = {Bohrn, U. and St{\"u}tz, E. and Fuchs, K. and Fleischer, M. and Sch{\"o}ning, Michael Josef and Wagner, P.}, title = {Monitoring of irritant gas using a whole-cell-based sensor system}, series = {Sensors and Actuators B: Chemical}, volume = {175}, journal = {Sensors and Actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2012.05.088}, pages = {208 -- 217}, year = {2012}, abstract = {Cell-based sensors for the detection of gases have long been underrepresented, due to the cellular requirement of being cultured in a liquid environment. In this work we established a cell-based gas biosensor for the detection of toxic substances in air, by adapting a commercial sensor chip (Bionas®), previously used for the measurement of pollutants in liquids. Cells of the respiratory tract (A549, RPMI 2650, V79), which survive at a gas phase in a natural context, are used as biological receptors. The physiological cell parameters acidification, respiration and morphology are continuously monitored in parallel. Ammonia was used as a highly water-soluble model gas to test the feasibility of the sensor system. Infrared measurements confirmed the sufficiency of the medium draining method. This sensor system provides a basis for many sensor applications such as environmental monitoring, building technology and public security.}, language = {en} } @article{AbouzarPoghossianRazavietal.2009, author = {Abouzar, Maryam H. and Poghossian, Arshak and Razavi, A. and Williams, O. A. and Bijnens, N. and Wagner, P. and Sch{\"o}ning, Michael Josef}, title = {Characterisation of capacitive field-effect sensors with a nanocrystalline-diamond film as transducer material for multi-parameter sensing}, series = {Biosensors and Bioelectronics. 24 (2009), H. 5}, journal = {Biosensors and Bioelectronics. 24 (2009), H. 5}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {0956-5663}, pages = {1298 -- 1304}, year = {2009}, language = {en} } @article{PoghossianAbouzarChristiaensetal.2008, author = {Poghossian, Arshak and Abouzar, Maryam H. and Christiaens, P. and Williams, O. A. and Haenen, K. and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Sensing charged macromolecules with nanocrystalline diamond-based field-effect capacitive sensors}, series = {Journal of Contemporary Physics. 43 (2008), H. 2}, journal = {Journal of Contemporary Physics. 43 (2008), H. 2}, isbn = {1934-9378}, pages = {77 -- 81}, year = {2008}, language = {en} } @article{HuckPoghossianBaeckeretal.2014, author = {Huck, Christina and Poghossian, Arshak and B{\"a}cker, Matthias and Chaudhuri, S. and Zander, W. and Schubert, J. and Begoyan, V. K. and Buniatyan, V. V. and Wagner, P. and Sch{\"o}ning, Michael Josef}, title = {Capacitively coupled electrolyte-conductivity sensor based on high-k material of barium strontium titanate}, series = {Sensors and actuators. B: Chemical}, journal = {Sensors and actuators. B: Chemical}, number = {198}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-3077 (E-Journal); 0925-4005 (Print)}, doi = {10.1016/j.snb.2014.02.103}, pages = {102 -- 109}, year = {2014}, language = {en} } @article{ReisertGeisslerWeileretal.2015, author = {Reisert, Steffen and Geissler, H. and Weiler, C. and Wagner, P. and Sch{\"o}ning, Michael Josef}, title = {Multiple sensor-type system for monitoring the microbicidal effectiveness of aseptic sterilisation processes}, series = {Food control}, volume = {47}, journal = {Food control}, issn = {1873-7129 (E-Journal); 0956-7135 (Print)}, doi = {10.1016/j.foodcont.2014.07.063}, pages = {615 -- 622}, year = {2015}, abstract = {The present work describes a novel multiple sensor-type system for the real-time analysis of aseptic sterilisation processes employing gaseous hydrogen peroxide (H2O2) as a sterilant. The inactivation kinetics of Bacillus atrophaeus by gaseous H2O2 have been investigated by means of a methodical calibration experiment, taking into account the process variables H2O2 concentration, humidity and gas temperature. It has been found that the microbicidal effectiveness at H2O2 concentrations above 2\% v/v is largely determined by the concentration itself, while at lower H2O2 concentrations, the gas temperature and humidity play a leading role. Furthermore, the responses of different types of gas sensors towards the influencing factors of the sterilisation process have been analysed within the same experiment. Based on a correlation established between the inactivation kinetics and the sensor responses, a calorimetric H2O2 sensor and a metal-oxide semiconductor (MOX) sensor have been identified as possible candidates for monitoring the microbicidal effectiveness of aseptic sterilisation processes employing gaseous H2O2. Therefore, two linear models that describe the relationship between sensor response and microbicidal effectiveness have been proposed.}, language = {en} } @article{SchusserPoghossianBaeckeretal.2015, author = {Schusser, Sebastian and Poghossian, Arshak and B{\"a}cker, Matthias and Krischer, M. and Leinhos, Marcel and Wagner, P. and Sch{\"o}ning, Michael Josef}, title = {An application of field-effect sensors for in-situ monitoring of degradation of biopolymers}, series = {Sensors and actuators B: Chemical}, volume = {207, Part B}, journal = {Sensors and actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-3077 (E-Journal); 0925-4005 (Print)}, doi = {10.1016/j.snb.2014.10.058}, pages = {954 -- 959}, year = {2015}, abstract = {The characterization of the degradation kinetics of biodegradable polymers is mandatory with regard to their proper application. In the present work, polymer-modified electrolyte-insulator-semiconductor (PMEIS) field-effect sensors have been applied for in-situ monitoring of the pH-dependent degradation kinetics of the commercially available biopolymer poly(d,l-lactic acid) (PDLLA) in buffer solutions from pH 3 to pH 13. PDLLA films of 500 nm thickness were deposited on the surface of an Al-p-Si-SiO2-Ta2O5 structure from a polymer solution by means of spin-coating method. The PMEIS sensor is, in principle, capable to detect any changes in bulk, surface and interface properties of the polymer induced by degradation processes. A faster degradation has been observed for PDLLA films exposed to alkaline solutions (pH 9, pH 11 and pH 13).}, language = {en} } @article{MuribYeapMartensetal.2015, author = {Murib, M. S. and Yeap, W. S. and Martens, D. and Liu, X. and Bienstman, P. and Fahlman, M. and Sch{\"o}ning, Michael Josef and Michiels, L. and Haenen, K. and Serpeng{\"u}zel, A. and Wagner, Patrick}, title = {Photonic studies on polymer-coated sapphire-spheres : a model system for biological ligands}, series = {Sensors and actuators A: Physical}, volume = {222}, journal = {Sensors and actuators A: Physical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-3069 (E-Journal); 0924-4247 (Print)}, doi = {10.1016/j.sna.2014.11.024}, pages = {212 -- 219}, year = {2015}, abstract = {In this study we show an optical biosensor concept, based on elastic light scattering from sapphire microspheres. Transmitted and elastic scattering intensity of the microspheres (radius 500 μm, refractive index 1.77) on an optical fiber half coupler is analyzed at 1510 nm. The 0.43 nm angular mode spacing of the resonances is comparable to the angular mode spacing value estimated using the optical size of the microsphere. The spectral linewidths of the resonances are in the order of 0.01 nm, which corresponds to quality factors of approximately 105. A polydopamine layer is used as a functionalizing agent on sapphire microspherical resonators in view of biosensor implementation. The varying layer thickness on the microsphere is determined as a function of the resonance wavelength shift. It is shown that polymer functionalization has a minor effect on the quality factor. This is a promising step toward the development of an optical biosensor.}, language = {en} } @article{SchusserBaeckerKrischeretal.2014, author = {Schusser, Sebastian and B{\"a}cker, Matthias and Krischer, M. and Wenzel, L. and Leinhos, Marcel and Poghossian, Arshak and Biselli, Manfred and Wagner, P. and Sch{\"o}ning, Michael Josef}, title = {Enzymatically catalyzed degradation of biodegradable polymers investigated by means of a semiconductor-based field-effect sensor}, series = {Procedia Engineering}, volume = {87}, journal = {Procedia Engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2014.11.689}, pages = {1314 -- 1317}, year = {2014}, abstract = {A semiconductor field-effect device has been used for an enzymatically catalyzed degradation of biopolymers for the first time. This novel technique is capable to monitor the degradation process of multiple samples in situ and in real-time. As model system, the degradation of the biopolymer poly(D, L-lactic acid) has been monitored in the degradation medium containing the enzyme lipase from Rhizomucor miehei. The obtained results demonstrate the potential of capacitive field-effect sensors for degradation studies of biodegradable polymers.}, language = {en} } @inproceedings{SchoeningAbouzarWagneretal.2006, author = {Sch{\"o}ning, Michael Josef and Abouzar, Maryam H. and Wagner, Torsten and N{\"a}ther, Niko and Rolka, David and Yoshinobu, Tatsuo and Kloock, Joachim P. and Turek, Monika and Ingebrandt, Sven and Poghossian, Arshak}, title = {A semiconductor-based field-effect platform for (bio-)chemical and physical sensors: From capacitive EIS sensors and LAPS over ISFETs to nano-scale devices}, series = {MRS Proceedings}, booktitle = {MRS Proceedings}, doi = {10.1557/PROC-0952-F08-02}, pages = {1 -- 9}, year = {2006}, language = {en} } @inproceedings{JeanPierrePBaqueBillietal.2018, author = {Jean-Pierre P., de Vera and Baque, Mickael and Billi, Daniela and B{\"o}ttger, Ute and Bulat, Sergey and Czupalla, Markus and Dachwald, Bernd and de la Torre, Rosa and Elsaesser, Andreas and Foucher, Fr{\´e}d{\´e}ric and Korsitzky, Hartmut and Kozyrovska, Natalia and L{\"a}ufer, Andreas and Moeller, Ralf and Olsson-Francis, Karen and Onofri, Silvano and Sommer, Stefan and Wagner, Dirk and Westall, Frances}, title = {The search for life on Mars and in the Solar System - strategies, logistics and infrastructures}, series = {69th International Astronautical Congress (IAC)}, booktitle = {69th International Astronautical Congress (IAC)}, pages = {1 -- 8}, year = {2018}, abstract = {The question "Are we alone in the Universe?" is perhaps the most fundamental one that affects mankind. How can we address the search for life in our Solar System? Mars, Enceladus and Europa are the focus of the search for life outside the terrestrial biosphere. While it is more likely to find remnants of life (fossils of extinct life) on Mars because of its past short time window of the surface habitability, it is probably more likely to find traces of extant life on the icy moons and ocean worlds of Jupiter and Saturn. Nevertheless, even on Mars there could still be a chance to find extant life in niches near to the surface or in just discovered subglacial lakes beneath the South Pole ice cap. Here, the different approaches for the detection of traces of life in the form of biosignatures including pre-biotic molecules will be presented. We will outline the required infrastructure for this enterprise and give examples of future mission concepts to investigate the presence of life on other planets and moons. Finally, we will provide suggestions on methods, techniques, operations and strategies for preparation and realization of future life detection missions.}, language = {en} }