@article{FalkenbergKohnBottetal.2023, author = {Falkenberg, Fabian and Kohn, Sophie and Bott, Michael and Bongaerts, Johannes and Siegert, Petra}, title = {Biochemical characterisation of a novel broad pH spectrum subtilisin from Fictibacillus arsenicus DSM 15822ᵀ}, series = {FEBS Open Bio}, volume = {13}, journal = {FEBS Open Bio}, number = {11}, publisher = {Wiley}, address = {Hoboken, NJ}, issn = {2211-5463}, doi = {10.1002/2211-5463.13701}, pages = {2035 -- 2046}, year = {2023}, abstract = {Subtilisins from microbial sources, especially from the Bacillaceae family, are of particular interest for biotechnological applications and serve the currently growing enzyme market as efficient and novel biocatalysts. Biotechnological applications include use in detergents, cosmetics, leather processing, wastewater treatment and pharmaceuticals. To identify a possible candidate for the enzyme market, here we cloned the gene of the subtilisin SPFA from Fictibacillus arsenicus DSM 15822ᵀ (obtained through a data mining-based search) and expressed it in Bacillus subtilis DB104. After production and purification, the protease showed a molecular mass of 27.57 kDa and a pI of 5.8. SPFA displayed hydrolytic activity at a temperature optimum of 80 °C and a very broad pH optimum between 8.5 and 11.5, with high activity up to pH 12.5. SPFA displayed no NaCl dependence but a high NaCl tolerance, with decreasing activity up to concentrations of 5 m NaCl. The stability enhanced with increasing NaCl concentration. Based on its substrate preference for 10 synthetic peptide 4-nitroanilide substrates with three or four amino acids and its phylogenetic classification, SPFA can be assigned to the subgroup of true subtilisins. Moreover, SPFA exhibited high tolerance to 5\% (w/v) SDS and 5\% H₂O₂ (v/v). The biochemical properties of SPFA, especially its tolerance of remarkably high pH, SDS and H₂O₂, suggest it has potential for biotechnological applications.}, language = {en} } @article{FalkenbergBottBongaertsetal.2022, author = {Falkenberg, Fabian and Bott, Michael and Bongaerts, Johannes and Siegert, Petra}, title = {Phylogenetic survey of the subtilase family and a data-mining-based search for new subtilisins from Bacillaceae}, series = {Frontiers in Microbiology}, volume = {2022}, journal = {Frontiers in Microbiology}, number = {13}, publisher = {Frontiers}, address = {Lausanne}, issn = {1664-302X}, doi = {10.3389/fmicb.2022.1017978}, pages = {Artikel 13:1017978}, year = {2022}, abstract = {The subtilase family (S8), a member of the clan SB of serine proteases are ubiquitous in all kingdoms of life and fulfil different physiological functions. Subtilases are divided in several groups and especially subtilisins are of interest as they are used in various industrial sectors. Therefore, we searched for new subtilisin sequences of the family Bacillaceae using a data mining approach. The obtained 1,400 sequences were phylogenetically classified in the context of the subtilase family. This required an updated comprehensive overview of the different groups within this family. To fill this gap, we conducted a phylogenetic survey of the S8 family with characterised holotypes derived from the MEROPS database. The analysis revealed the presence of eight previously uncharacterised groups and 13 subgroups within the S8 family. The sequences that emerged from the data mining with the set filter parameters were mainly assigned to the subtilisin subgroups of true subtilisins, high-alkaline subtilisins, and phylogenetically intermediate subtilisins and represent an excellent source for new subtilisin candidates.}, language = {en} } @article{DuennwaldDemirSiegertetal.2001, author = {D{\"u}nnwald, Thomas and Demir, Ayhan S. and Siegert, Petra and Pohl, Martina and M{\"u}ller, Michael}, title = {ChemInform Abstract: Enantioselective synthesis of (S)-2-Hydroxypropanone derivatives by Benzoylformate Decarboxylase Catalyzed C—C Bond Formation}, series = {Cheminform}, volume = {Vol. 32}, journal = {Cheminform}, number = {Iss. 4}, issn = {1522-2667 (E-Journal); 0931-7597 (Print)}, pages = {Publ. online}, year = {2001}, language = {en} } @article{DuennwaldDemirSiegertetal.2000, author = {D{\"u}nnwald, Thomas and Demir, Ayhan S. and Siegert, Petra and Pohl, Martina and M{\"u}ller, Michael}, title = {Enantioselective Synthesis of (S)-2-Hydroxypropanone Derivatives by Benzoylformate Decarboxylase Catalyzed C-C Bond Formation}, series = {European journal of organic chemistry}, volume = {Vol. 2000}, journal = {European journal of organic chemistry}, number = {Iss. 11}, issn = {0365-5490 (E-Journal); 1099-0690 (E-Journal); 0075-4617 (Print); 0170-2041 (Print); 0947-3440 (Print); 1434-193X (Print); 1434-243X (Print)}, pages = {2161 -- 2170}, year = {2000}, language = {en} } @article{DuenkelmannKolterJungNitscheetal.2002, author = {D{\"u}nkelmann, Pascal and Kolter-Jung, Doris and Nitsche, Adam and Demir, Ayhan S. and Siegert, Petra and Lingen, Bettina and Baumann, Martin and Pohl, Martina and M{\"u}ller, Michael}, title = {Development of a donor-acceptor concept for enzymatic cross-coupling reactions of adehydes : the first asymmetric cross-benzoin condensation}, series = {Journal of the American Chemical Society}, volume = {Vol. 124}, journal = {Journal of the American Chemical Society}, issn = {1520-5126 (E-Journal); 0002-7863 (Print)}, pages = {12084 -- 12085}, year = {2002}, language = {en} } @misc{BesslerMaurerMerkeletal.2009, author = {Bessler, Cornelius and Maurer, Karl-Heinz and Merkel, Marion and Siegert, Petra and Wieland, Susanne}, title = {Subtilisin from Bacillus Pumilus and detergent and cleaning agents containing said novel subtilisin [US Patentanmeldung / Internationale Patentanmeldung]}, publisher = {USPTO; WIPO}, address = {Washington; Genf}, pages = {1 -- 39}, year = {2009}, language = {en} }