@article{TranKreissigStaat2009, author = {Tran, Thanh Ngoc and Kreißig, R. and Staat, Manfred}, title = {Probabilistic limit and shakedown analysis of thin plates and shells}, series = {Structural safety. 31 (2009), H. 1}, journal = {Structural safety. 31 (2009), H. 1}, publisher = {-}, isbn = {0167-4730}, pages = {1 -- 18}, year = {2009}, language = {en} } @article{StaatTranKreissig2008, author = {Staat, Manfred and Tran, Thanh Ngoc and Kreißig, R.}, title = {Load bearing capacity of thin shell structures made of elastoplastic material by direct methods}, series = {Technische Mechanik. 28 (2008), H. 3-4}, journal = {Technische Mechanik. 28 (2008), H. 3-4}, pages = {299 -- 309}, year = {2008}, language = {en} } @inproceedings{StaatTranPham2008, author = {Staat, Manfred and Tran, Thanh Ngoc and Pham, Phu Tinh}, title = {Limit and shakedown reliability analysis by nonlinear programming}, year = {2008}, abstract = {7th International Conference on Reliability of Materials and Structures (RELMAS 2008). June 17 - 20, 2008 ; Saint Petersburg, Russia. pp 354-358. Reprint with corrections in red Introduction Analysis of advanced structures working under extreme heavy loading such as nuclear power plants and piping system should take into account the randomness of loading, geometrical and material parameters. The existing reliability are restricted mostly to the elastic working regime, e.g. allowable local stresses. Development of the limit and shakedown reliability-based analysis and design methods, exploiting potential of the shakedown working regime, is highly needed. In this paper the application of a new algorithm of probabilistic limit and shakedown analysis for shell structures is presented, in which the loading and strength of the material as well as the thickness of the shell are considered as random variables. The reliability analysis problems may be efficiently solved by using a system combining the available FE codes, a deterministic limit and shakedown analysis, and the First and Second Order Reliability Methods (FORM/SORM). Non-linear sensitivity analyses are obtained directly from the solution of the deterministic problem without extra computational costs.}, subject = {Finite-Elemente-Methode}, language = {en} } @phdthesis{Tran2008, author = {Tran, Thanh Ngoc}, title = {Limit and shakedown analysis of plates and shells including uncertainties}, year = {2008}, language = {en} } @article{BhattaraiMayStaatetal.2022, author = {Bhattarai, Aroj and May, Charlotte Anabell and Staat, Manfred and Kowalczyk, Wojciech and Tran, Thanh Ngoc}, title = {Layer-specific damage modeling of porcine large intestine under biaxial tension}, series = {Bioengineering}, volume = {9}, journal = {Bioengineering}, number = {10, Early Access}, publisher = {MDPI}, address = {Basel}, issn = {2306-5354}, doi = {10.3390/bioengineering9100528}, pages = {1 -- 17}, year = {2022}, abstract = {The mechanical behavior of the large intestine beyond the ultimate stress has never been investigated. Stretching beyond the ultimate stress may drastically impair the tissue microstructure, which consequently weakens its healthy state functions of absorption, temporary storage, and transportation for defecation. Due to closely similar microstructure and function with humans, biaxial tensile experiments on the porcine large intestine have been performed in this study. In this paper, we report hyperelastic characterization of the large intestine based on experiments in 102 specimens. We also report the theoretical analysis of the experimental results, including an exponential damage evolution function. The fracture energies and the threshold stresses are set as damage material parameters for the longitudinal muscular, the circumferential muscular and the submucosal collagenous layers. A biaxial tensile simulation of a linear brick element has been performed to validate the applicability of the estimated material parameters. The model successfully simulates the biomechanical response of the large intestine under physiological and non-physiological loads.}, language = {en} } @article{DuongNguyenTranetal.2015, author = {Duong, Minh Tuan and Nguyen, Nhu Huynh and Tran, Thanh Ngoc and Tolba, R. H. and Staat, Manfred}, title = {Influence of refrigerated storage on tensile mechanical properties of porcine liver and spleen}, series = {International biomechanics}, volume = {Vol. 2}, journal = {International biomechanics}, number = {Iss. 1}, publisher = {Taylor \& Francis}, address = {London}, issn = {2333-5432}, doi = {10.1080/23335432.2015.1049295}, pages = {79 -- 88}, year = {2015}, language = {en} } @article{NguyenDuongTranetal.2012, author = {Nguyen, Nhu Huynh and Duong, Minh Tuan and Tran, Thanh Ngoc and Pham, Phu Tinh and Grottke, O. and Tolba, R. and Staat, Manfred}, title = {Influence of a freeze-thaw cycle on the stress-stretch curves of tissues of porcine abdominal organs}, series = {Journal of Biomechanics}, volume = {45}, journal = {Journal of Biomechanics}, number = {14}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-2380}, doi = {10.1016/j.jbiomech.2012.07.008}, pages = {2382 -- 2386}, year = {2012}, abstract = {The paper investigates both fresh porcine spleen and liver and the possible decomposition of these organs under a freeze-thaw cycle. The effect of tissue preservation condition is an important factor which should be taken into account for protracted biomechanical tests. In this work, tension tests were conducted for a large number of tissue specimens from twenty pigs divided into two groups of 10. Concretely, the first group was tested in fresh state; the other one was tested after a freeze-thaw cycle which simulates the conservation conditions before biomechanical experiments. A modified Fung model for isotropic behavior was adopted for the curve fitting of each kind of tissues. Experimental results show strong effects of the realistic freeze-thaw cycle on the capsule of elastin-rich spleen but negligible effects on the liver which virtually contains no elastin. This different behavior could be explained by the autolysis of elastin by elastolytic enzymes during the warmer period after thawing. Realistic biomechanical properties of elastin-rich organs can only be expected if really fresh tissue is tested. The observations are supported by tests of intestines.}, language = {en} } @inproceedings{TranStaatKreissig2007, author = {Tran, Thanh Ngoc and Staat, Manfred and Kreißig, R.}, title = {Finite element shakedown and limit reliability analysis of thin shells}, year = {2007}, abstract = {A procedure for the evaluation of the failure probability of elastic-plastic thin shell structures is presented. The procedure involves a deterministic limit and shakedown analysis for each probabilistic iteration which is based on the kinematical approach and the use the exact Ilyushin yield surface. Based on a direct definition of the limit state function, the non-linear problems may be efficiently solved by using the First and Second Order Reliabiblity Methods (Form/SORM). This direct approach reduces considerably the necessary knowledge of uncertain technological input data, computing costs and the numerical error. In: Computational plasticity / ed. by Eugenio Onate. Dordrecht: Springer 2007. VII, 265 S. (Computational Methods in Applied Sciences ; 7) (COMPLAS IX. Part 1 . International Center for Numerical Methods in Engineering (CIMNE)). ISBN 978-1-402-06576-7 S. 186-189}, subject = {Finite-Elemente-Methode}, language = {en} } @article{NovacekTranKlingeetal.2012, author = {Novacek, V. and Tran, Thanh Ngoc and Klinge, U. and Tolba, R. H. and Staat, Manfred and Bronson, D. G. and Miesse, A. M. and Whiffen, J. and Turquier, F.}, title = {Finite element modelling of stapled colorectal end-to-end anastomosis : Advantages of variable height stapler design}, series = {Journal of Biomechanics}, volume = {45}, journal = {Journal of Biomechanics}, number = {115}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-2380}, doi = {10.1016/j.jbiomech.2012.07.021}, pages = {2693 -- 2697}, year = {2012}, abstract = {The impact of surgical staplers on tissues has been studied mostly in an empirical manner. In this paper, finite element method was used to clarify the mechanics of tissue stapling and associated phenomena. Various stapling modalities and several designs of circular staplers were investigated to evaluate the impact of the device on tissues and mechanical performance of the end-to-end colorectal anastomosis. Numerical simulations demonstrated that a single row of staples is not adequate to resist leakage due to non-linear buckling and opening of the tissue layers between two adjacent staples. Compared to the single staple row configuration, significant increase in stress experienced by the tissue at the inner staple rows was observed in two and three rows designs. On the other hand, adding second and/or third staple row had no effect on strain in the tissue inside the staples. Variable height design with higher staples in outer rows significantly reduced the stresses and strains in outer rows when compared to the same configuration with flat cartridge.}, language = {en} } @inproceedings{TranTranMatthiesetal.2016, author = {Tran, Ngoc Trinh and Tran, Thanh Ngoc and Matthies, Hermann G. and Stavroulakis, Georgios Eleftherios and Staat, Manfred}, title = {FEM Shakedown of uncertain structures by chance constrained programming}, series = {PAMM Proceedings in Applied Mathematics and Mechanics}, volume = {16}, booktitle = {PAMM Proceedings in Applied Mathematics and Mechanics}, number = {1}, issn = {1617-7061}, doi = {10.1002/pamm.201610346}, pages = {715 -- 716}, year = {2016}, language = {en} }