@article{WernerGroebelWagneretal.2011, author = {Werner, Frederik and Groebel, Simone and Wagner, Torsten and Yoshinobu, Tatsuo and Selmer, Thorsten and Baumann, Marcus and Sch{\"o}ning, Michael Josef}, title = {{\"U}berwachung der metabolischen Aktivit{\"a}t von Mikroorganismen zur Kontrolle des biologischen Prozesses im Biogasfermenter}, series = {Biogas 2011 : Energietr{\"a}ger der Zukunft ; 6. Fachtagung, Fachtagung Braunschweig, 08. und 09. Juni 2011 / VDI Energie und Umwelt}, journal = {Biogas 2011 : Energietr{\"a}ger der Zukunft ; 6. Fachtagung, Fachtagung Braunschweig, 08. und 09. Juni 2011 / VDI Energie und Umwelt}, publisher = {VDI-Verl.}, address = {D{\"u}sseldorf}, isbn = {978-3-18-092121-1}, pages = {285 -- 286}, year = {2011}, language = {de} } @article{SelmerHermannJessenetal.2005, author = {Selmer, Thorsten and Hermann, Gloria and Jessen, Holly and Gokarn, Ravi R.}, title = {Two beta-alanyl-CoA:ammonia lyases in Clostridium propionicum / Herrmann , G. ; Selmer, T. ; Jessen, HJ. ; Gokarn, RR. ; Selifonova, O. ; Gort , SJ. ; , Buckel, W.}, series = {The FEBS Journal. 272 (2005), H. 3}, journal = {The FEBS Journal. 272 (2005), H. 3}, isbn = {1742-464X}, pages = {813 -- 821}, year = {2005}, language = {en} } @article{RoehlenPilasDahmenetal.2018, author = {R{\"o}hlen, Desiree and Pilas, Johanna and Dahmen, Markus and Keusgen, Michael and Selmer, Thorsten and Sch{\"o}ning, Michael Josef}, title = {Toward a Hybrid Biosensor System for Analysis of Organic and Volatile Fatty Acids in Fermentation Processes}, series = {Frontiers in Chemistry}, journal = {Frontiers in Chemistry}, number = {6}, publisher = {Frontiers}, address = {Lausanne}, doi = {10.3389/fchem.2018.00284}, pages = {Artikel 284}, year = {2018}, abstract = {Monitoring of organic acids (OA) and volatile fatty acids (VFA) is crucial for the control of anaerobic digestion. In case of unstable process conditions, an accumulation of these intermediates occurs. In the present work, two different enzyme-based biosensor arrays are combined and presented for facile electrochemical determination of several process-relevant analytes. Each biosensor utilizes a platinum sensor chip (14 × 14 mm²) with five individual working electrodes. The OA biosensor enables simultaneous measurement of ethanol, formate, d- and l-lactate, based on a bi-enzymatic detection principle. The second VFA biosensor provides an amperometric platform for quantification of acetate and propionate, mediated by oxidation of hydrogen peroxide. The cross-sensitivity of both biosensors toward potential interferents, typically present in fermentation samples, was investigated. The potential for practical application in complex media was successfully demonstrated in spiked sludge samples collected from three different biogas plants. Thereby, the results obtained by both of the biosensors were in good agreement to the applied reference measurements by photometry and gas chromatography, respectively. The proposed hybrid biosensor system was also used for long-term monitoring of a lab-scale biogas reactor (0.01 m³) for a period of 2 months. In combination with typically monitored parameters, such as gas quality, pH and FOS/TAC (volatile organic acids/total anorganic carbonate), the amperometric measurements of OA and VFA concentration could enhance the understanding of ongoing fermentation processes.}, language = {en} } @article{DemmerChowdhurySelmeretal.2017, author = {Demmer, Julius K. and Chowdhury, Nilanjan Pal and Selmer, Thorsten and Ermler, Ulrich and Buckel, Wolfgang}, title = {The semiquinone swing in the bifurcating electron transferring flavoprotein/butyryl-CoA dehydrogenase complex from Clostridium difficile}, series = {Nature Communications}, volume = {8}, journal = {Nature Communications}, number = {1}, issn = {2041-1723}, doi = {10.1038/s41467-017-01746-3}, pages = {1 -- 10}, year = {2017}, language = {en} } @article{SelmerHallmannSchmidtetal.1996, author = {Selmer, Thorsten and Hallmann, Armin and Schmidt, Bernhard and Sumper, Manfred}, title = {The Evolutionary Conservation of a Novel Protein Modification, the Conversion of Cysteine to Serinesemialdehyde in Arylsulfatase from Volvox carteri / Selmer, Thorsten ; Hallmann, Armin ; Schmidt, Bernhard ; Sumper, Manfred ; Figura, Kurt von}, series = {European Journal of Biochemistry. 238 (1996), H. 2}, journal = {European Journal of Biochemistry. 238 (1996), H. 2}, isbn = {0014-2956}, pages = {341 -- 345}, year = {1996}, language = {en} } @article{SelmerKahntGoubeaudetal.2000, author = {Selmer, Thorsten and Kahnt, J{\"o}rg and Goubeaud, Marcel and Shima, Seigo}, title = {The biosynthesis of methylated amino acids in the active site region of methyl-coenzyme M reductase / Selmer, Thorsten ; Kahnt, J{\"o}rg ; Goubeaud, Marcel ; Shima, Seigo ; Grabarse, Wolfgang ; Ermler, Ulrich ; Thauer, Rudolf K.}, series = {Journal of Biological Chemistry. 275 (2000), H. 6}, journal = {Journal of Biological Chemistry. 275 (2000), H. 6}, isbn = {1083-351X}, pages = {3775 -- 3760}, year = {2000}, language = {en} } @article{MuschallikKippReckeretal.2020, author = {Muschallik, Lukas and Kipp, Carina Ronja and Recker, Inga and Bongaerts, Johannes and Pohl, Martina and Gelissen, Melanie and Sch{\"o}ning, Michael Josef and Selmer, Thorsten and Siegert, Petra}, title = {Synthesis of α-hydroxy ketones and vicinal diols with the Bacillus licheniformis DSM 13T butane-2, 3-diol dehydrogenase}, series = {Journal of Biotechnology}, volume = {202}, journal = {Journal of Biotechnology}, number = {Vol. 324}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {2590-1559}, doi = {10.1016/j.jbiotec.2020.09.016}, pages = {61 -- 70}, year = {2020}, abstract = {The enantioselective synthesis of α-hydroxy ketones and vicinal diols is an intriguing field because of the broad applicability of these molecules. Although, butandiol dehydrogenases are known to play a key role in the production of 2,3-butandiol, their potential as biocatalysts is still not well studied. Here, we investigate the biocatalytic properties of the meso-butanediol dehydrogenase from Bacillus licheniformis DSM 13T (BlBDH). The encoding gene was cloned with an N-terminal StrepII-tag and recombinantly overexpressed in E. coli. BlBDH is highly active towards several non-physiological diketones and α-hydroxyketones with varying aliphatic chain lengths or even containing phenyl moieties. By adjusting the reaction parameters in biotransformations the formation of either the α-hydroxyketone intermediate or the diol can be controlled.}, language = {en} } @article{MuschallikMolinnusJablonskietal.2020, author = {Muschallik, Lukas and Molinnus, Denise and Jablonski, Melanie and Kipp, Carina Ronja and Bongaerts, Johannes and Pohl, Martina and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Selmer, Thorsten and Siegert, Petra}, title = {Synthesis of α-hydroxy ketones and vicinal (R, R)-diols by Bacillus clausii DSM 8716ᵀ butanediol dehydrogenase}, series = {RSC Advances}, volume = {10}, journal = {RSC Advances}, publisher = {Royal Society of Chemistry (RSC)}, address = {Cambridge}, issn = {2046-2069}, doi = {10.1039/D0RA02066D}, pages = {12206 -- 12216}, year = {2020}, abstract = {α-hydroxy ketones (HK) and 1,2-diols are important building blocks for fine chemical synthesis. Here, we describe the R-selective 2,3-butanediol dehydrogenase from B. clausii DSM 8716ᵀ (BcBDH) that belongs to the metal-dependent medium chain dehydrogenases/reductases family (MDR) and catalyzes the selective asymmetric reduction of prochiral 1,2-diketones to the corresponding HK and, in some cases, the reduction of the same to the corresponding 1,2-diols. Aliphatic diketones, like 2,3-pentanedione, 2,3-hexanedione, 5-methyl-2,3-hexanedione, 3,4-hexanedione and 2,3-heptanedione are well transformed. In addition, surprisingly alkyl phenyl dicarbonyls, like 2-hydroxy-1-phenylpropan-1-one and phenylglyoxal are accepted, whereas their derivatives with two phenyl groups are not substrates. Supplementation of Mn²⁺ (1 mM) increases BcBDH's activity in biotransformations. Furthermore, the biocatalytic reduction of 5-methyl-2,3-hexanedione to mainly 5-methyl-3-hydroxy-2-hexanone with only small amounts of 5-methyl-2-hydroxy-3-hexanone within an enzyme membrane reactor is demonstrated.}, language = {en} } @article{SelmerRecksiekDierksetal.1998, author = {Selmer, Thorsten and Recksiek, Michael and Dierks, Thomas and Schmidt, Bernhard}, title = {Sulfatases, Trapping of the Sulfated Enzyme Intermediate by Substituting the Active Site Formylglycine / Recksiek, Michael ; Selmer, Thorsten ; Dierks, Thomas ; Schmidt, Bernhard ; Figura, Kurt von}, series = {Journal of Biological Chemistry. 273 (1998), H. 11}, journal = {Journal of Biological Chemistry. 273 (1998), H. 11}, isbn = {1083-351X}, pages = {6096 -- 6103}, year = {1998}, language = {en} } @article{SelmerAndreiPieriketal.2004, author = {Selmer, Thorsten and Andrei, Paula I. and Pierik, Antonio J. and Zauner, Stefan}, title = {Subunit composition of the glycyl radical enzyme p-hydroxyphenylacetate decarboxylase. A small subunit, HpdC, is essential for catalytic activity / Andrei, PI. ; Pierik, AJ. ; Zauner , S. ; Andrei-Selmer, LC. ; Selmer, T.}, series = {European Journal of Biochemistry. 271 (2004), H. 11}, journal = {European Journal of Biochemistry. 271 (2004), H. 11}, isbn = {0014-2956}, pages = {2225 -- 2230}, year = {2004}, language = {en} }