@inproceedings{KasperSchiffelsKrafftetal.2016, author = {Kasper, Katharina and Schiffels, Johannes and Krafft, Simone and Kuperjans, Isabel and Elbers, Gereon and Selmer, Thorsten}, title = {Biogas Production on Demand Regulated by Butyric Acid Addition}, series = {IOP Conference Series: Earth and Environmental Science. Bd. 32}, volume = {32}, booktitle = {IOP Conference Series: Earth and Environmental Science. Bd. 32}, issn = {1755-1315}, doi = {10.1088/1755-1315/32/1/012009}, pages = {012009/1 -- 012009/4}, year = {2016}, language = {en} } @article{WernerGroebelSchuhmacheretal.2009, author = {Werner, Frederik and Groebel, Simone and Schuhmacher, K. and Spelthahn, Heiko and Wagner, Torsten and Selmer, Thorsten and Baumann, Marcus and Sch{\"o}ning, Michael Josef}, title = {Bestimmung der metabolischen Aktivit{\"a}t von Mikroorganismen w{\"a}hrend des Biogasbildungsprozesses}, series = {9. Dresdner Sensor-Symposium : Dresden, 07.-09. Dezember 2009 / Gerlach, Gerald ; Hauptmann, Peter [Hrsg.]}, journal = {9. Dresdner Sensor-Symposium : Dresden, 07.-09. Dezember 2009 / Gerlach, Gerald ; Hauptmann, Peter [Hrsg.]}, publisher = {TUDpress}, address = {Dresden}, isbn = {978-3-941298-44-6}, pages = {201 -- 204}, year = {2009}, language = {de} } @article{PilasYaziciSelmeretal.2018, author = {Pilas, Johanna and Yazici, Y. and Selmer, Thorsten and Keusgen, M. and Sch{\"o}ning, Michael Josef}, title = {Application of a portable multi-analyte biosensor for organic acid determination in silage}, series = {Sensors}, volume = {18}, journal = {Sensors}, number = {5}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s18051470}, pages = {12 Seiten}, year = {2018}, abstract = {Multi-analyte biosensors may offer the opportunity to perform cost-effective and rapid analysis with reduced sample volume, as compared to electrochemical biosensing of each analyte individually. This work describes the development of an enzyme-based biosensor system for multi-parametric determination of four different organic acids. The biosensor array comprises five working electrodes for simultaneous sensing of ethanol, formate, d-lactate, and l-lactate, and an integrated counter electrode. Storage stability of the biosensor was evaluated under different conditions (stored at +4 °C in buffer solution and dry at -21 °C, +4 °C, and room temperature) over a period of 140 days. After repeated and regular application, the individual sensing electrodes exhibited the best stability when stored at -21 °C. Furthermore, measurements in silage samples (maize and sugarcane silage) were conducted with the portable biosensor system. Comparison with a conventional photometric technique demonstrated successful employment for rapid monitoring of complex media.}, language = {en} } @article{SchiffelsPinkenburgScheldenetal.2013, author = {Schiffels, Johannes and Pinkenburg, Olaf and Schelden, Maximilian and Aboulnaga, El-Hussiny A. A. and Baumann, Marcus and Selmer, Thorsten}, title = {An innovative cloning platform enables large-scale production and maturation of an oxygen-tolerant [NiFe]-hydrogenase from cupriavidus necator in Escherichia coli}, series = {PLOS one. 2013}, journal = {PLOS one. 2013}, publisher = {Public Library of Science}, address = {San Francisco, California}, issn = {1932-6203}, doi = {10.1371/journal.pone.0068812}, year = {2013}, language = {en} } @techreport{SiegertBongaertsWagneretal.2022, author = {Siegert, Petra and Bongaerts, Johannes and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Selmer, Thorsten}, title = {Abschlussbericht zum Projekt zur {\"U}berwachung biotechnologischer Prozesse mittels Diacetyl-/Acetoin-Biosensor und Evaluierung von Acetoin-Reduktasen zur Verwendung in Biotransformationen}, address = {Aachen}, organization = {FH Aachen}, pages = {16 Seiten}, year = {2022}, language = {de} } @article{SchiffelsSelmer2015, author = {Schiffels, Johannes and Selmer, Thorsten}, title = {A flexible toolbox to study protein-assisted metalloenzyme assembly in vitro}, series = {Biotechnology and Bioengineering}, volume = {112}, journal = {Biotechnology and Bioengineering}, number = {11}, publisher = {Wiley}, address = {Weinheim}, issn = {1097-0290}, doi = {10.1002/bit.25658}, pages = {2360 -- 2372}, year = {2015}, language = {en} } @article{MuschallikMolinnusBongaertsetal.2017, author = {Muschallik, Lukas and Molinnus, Denise and Bongaerts, Johannes and Pohl, Martina and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Siegert, Petra and Selmer, Thorsten}, title = {(R,R)-Butane-2,3-diol Dehydrogenase from Bacillus clausii DSM 8716T: Cloning and Expression of the bdhA-Gene, and Initial Characterization of Enzyme}, series = {Journal of Biotechnology}, volume = {258}, journal = {Journal of Biotechnology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0168-1656}, doi = {10.1016/j.jbiotec.2017.07.020}, pages = {41 -- 50}, year = {2017}, abstract = {The gene encoding a putative (R,R)-butane-2,3-diol dehydrogenase (bdhA) from Bacillus clausii DSM 8716T was isolated, sequenced and expressed in Escherichia coli. The amino acid sequence of the encoded protein is only distantly related to previously studied enzymes (identity 33-43\%) and exhibited some uncharted peculiarities. An N-terminally StrepII-tagged enzyme variant was purified and initially characterized. The isolated enzyme catalyzed the (R)-specific oxidation of (R,R)- and meso-butane-2,3-diol to (R)- and (S)-acetoin with specific activities of 12 U/mg and 23 U/mg, respectively. Likewise, racemic acetoin was reduced with a specific activity of up to 115 U/mg yielding a mixture of (R,R)- and meso-butane-2,3-diol, while the enzyme reduced butane-2,3-dione (Vmax 74 U/mg) solely to (R,R)-butane-2,3-diol via (R)-acetoin. For these reactions only activity with the co-substrates NADH/NAD+ was observed. The enzyme accepted a selection of vicinal diketones, α-hydroxy ketones and vicinal diols as alternative substrates. Although the physiological function of the enzyme in B. clausii remains elusive, the data presented herein clearly demonstrates that the encoded enzyme is a genuine (R,R)-butane-2,3-diol dehydrogenase with potential for applications in biocatalysis and sensor development.}, language = {en} }