@article{SchollAachDesernoetal.2011, author = {Scholl, Ingrid and Aach, Til and Deserno, Thomas M. and Kuhlen, Torsten}, title = {Challenges of medical image processing}, series = {Computer Science - Research and Development}, volume = {26}, journal = {Computer Science - Research and Development}, number = {1-2}, publisher = {Springer}, address = {Berlin}, isbn = {1865-2042}, pages = {5 -- 13}, year = {2011}, language = {en} } @article{DesernoAachAmuntsetal.2011, author = {Deserno, Thomas M. and Aach, Til and Amunts, Katrin and Hillen, Walter and Kuhlen, Torsten and Scholl, Ingrid}, title = {Advances in medical image processing : A special Issue on the Workshop in Aachen, Germany, March 2010}, series = {Computer Science - Research and Development. 26 (2011), H. 1-2}, journal = {Computer Science - Research and Development. 26 (2011), H. 1-2}, publisher = {springer}, address = {Berlin}, isbn = {1865-2042}, pages = {1 -- 3}, year = {2011}, language = {en} } @article{UllrichGrottkeRossaintetal.2010, author = {Ullrich, Sebastian and Grottke, Oliver and Rossaint, Rolf and Staat, Manfred and Deserno, Thomas M. and Kuhlen, Torsten}, title = {Virtual Needle Simulation with Haptics for Regional Anaesthesia}, pages = {1 -- 3}, year = {2010}, language = {en} } @incollection{KnottSofroniaGerressenetal.2014, author = {Knott, Thomas C. and Sofronia, Raluca E. and Gerressen, Marcus and Law, Yuen and Davidescu, Arjana and Savii, George G. and Gatzweiler, Karl-Heinz and Staat, Manfred and Kuhlen, Torsten W.}, title = {Preliminary bone sawing model for a virtual reality-based training simulator of bilateral sagittal split osteotomy}, series = {Biomedical simulation : 6th International Symposium, ISBMS 2014, Strasbourg, France, October 16-17, 2014 : proceedings (Lecture notes in computer science : vol. 8789)}, booktitle = {Biomedical simulation : 6th International Symposium, ISBMS 2014, Strasbourg, France, October 16-17, 2014 : proceedings (Lecture notes in computer science : vol. 8789)}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-12057-7 (Online)}, doi = {10.1007/978-3-319-12057-7_1}, pages = {1 -- 10}, year = {2014}, abstract = {Successful bone sawing requires a high level of skill and experience, which could be gained by the use of Virtual Reality-based simulators. A key aspect of these medical simulators is realistic force feedback. The aim of this paper is to model the bone sawing process in order to develop a valid training simulator for the bilateral sagittal split osteotomy, the most often applied corrective surgery in case of a malposition of the mandible. Bone samples from a human cadaveric mandible were tested using a designed experimental system. Image processing and statistical analysis were used for the selection of four models for the bone sawing process. The results revealed a polynomial dependency between the material removal rate and the applied force. Differences between the three segments of the osteotomy line and between the cortical and cancellous bone were highlighted.}, language = {en} }