@incollection{YoshinobuKrauseMiyamotoetal.2018, author = {Yoshinobu, Tatsuo and Krause, Steffi and Miyamoto, Ko-ichiro and Werner, Frederik and Poghossian, Arshak and Wagner, Torsten and Sch{\"o}ning, Michael Josef}, title = {(Bio-)chemical Sensing and Imaging by LAPS and SPIM}, series = {Label-free biosensing: advanced materials, devices and applications}, booktitle = {Label-free biosensing: advanced materials, devices and applications}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-75219-8}, pages = {103 -- 132}, year = {2018}, abstract = {The light-addressable potentiometric sensor (LAPS) and scanning photo-induced impedance microscopy (SPIM) are two closely related methods to visualise the distributions of chemical species and impedance, respectively, at the interface between the sensing surface and the sample solution. They both have the same field-effect structure based on a semiconductor, which allows spatially resolved and label-free measurement of chemical species and impedance in the form of a photocurrent signal generated by a scanning light beam. In this article, the principles and various operation modes of LAPS and SPIM, functionalisation of the sensing surface for measuring various species, LAPS-based chemical imaging and high-resolution sensors based on silicon-on-sapphire substrates are described and discussed, focusing on their technical details and prospective applications.}, language = {en} } @article{WagnerMarisAckermannetal.2007, author = {Wagner, Torsten and Maris, Rob J. and Ackermann, Hans-Josef and Otto, Ralph and Beging, Stefan and Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Handheld measurement device for field-effect sensor structures: Practical evaluation and limitations}, series = {Sensors and Actuators B: Chemical . 127 (2007), H. 1}, journal = {Sensors and Actuators B: Chemical . 127 (2007), H. 1}, isbn = {0925-4005}, pages = {217 -- 223}, year = {2007}, language = {en} } @article{OezsoyluKizildagSchoeningetal.2020, author = {{\"O}zsoylu, Dua and Kizildag, Sefa and Sch{\"o}ning, Michael Josef and Wagner, Torsten}, title = {Differential chemical imaging of extracellular acidification within microfluidic channels using a plasma-functionalized light-addressable potentiometric sensor (LAPS)}, series = {Physics in Medicine}, volume = {10}, journal = {Physics in Medicine}, number = {100030}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2352-4510}, doi = {10.1016/j.phmed.2020.100030}, pages = {8}, year = {2020}, abstract = {Extracellular acidification is a basic indicator for alterations in two vital metabolic pathways: glycolysis and cellular respiration. Measuring these alterations by monitoring extracellular acidification using cell-based biosensors such as LAPS plays an important role in studying these pathways whose disorders are associated with numerous diseases including cancer. However, the surface of the biosensors must be specially tailored to ensure high cell compatibility so that cells can represent more in vivo-like behavior, which is critical to gain more realistic in vitro results from the analyses, e.g., drug discovery experiments. In this work, O2 plasma patterning on the LAPS surface is studied to enhance surface features of the sensor chip, e.g., wettability and biofunctionality. The surface treated with O2 plasma for 30 s exhibits enhanced cytocompatibility for adherent CHO-K1 cells, which promotes cell spreading and proliferation. The plasma-modified LAPS chip is then integrated into a microfluidic system, which provides two identical channels to facilitate differential measurements of the extracellular acidification of CHO-K1 cells. To the best of our knowledge, it is the first time that extracellular acidification within microfluidic channels is quantitatively visualized as differential (bio-)chemical images.}, language = {en} } @article{OezsoyluKizildagSchoeningetal.2019, author = {{\"O}zsoylu, Dua and Kizildag, Sefa and Sch{\"o}ning, Michael Josef and Wagner, Torsten}, title = {Effect of plasma treatment on the sensor properties of a light-addressable potentiometric sensor (LAPS)}, series = {physica status solidi a : applications and materials sciences}, volume = {216}, journal = {physica status solidi a : applications and materials sciences}, number = {20}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201900259}, pages = {8 Seiten}, year = {2019}, abstract = {A light-addressable potentiometric sensor (LAPS) is a field-effect-based (bio-) chemical sensor, in which a desired sensing area on the sensor surface can be defined by illumination. Light addressability can be used to visualize the concentration and spatial distribution of the target molecules, e.g., H+ ions. This unique feature has great potential for the label-free imaging of the metabolic activity of living organisms. The cultivation of those organisms needs specially tailored surface properties of the sensor. O2 plasma treatment is an attractive and promising tool for rapid surface engineering. However, the potential impacts of the technique are carefully investigated for the sensors that suffer from plasma-induced damage. Herein, a LAPS with a Ta2O5 pH-sensitive surface is successfully patterned by plasma treatment, and its effects are investigated by contact angle and scanning LAPS measurements. The plasma duration of 30 s (30 W) is found to be the threshold value, where excessive wettability begins. Furthermore, this treatment approach causes moderate plasma-induced damage, which can be reduced by thermal annealing (10 min at 300 °C). These findings provide a useful guideline to support future studies, where the LAPS surface is desired to be more hydrophilic by O2 plasma treatment.}, language = {en} } @article{WagnerMiyamotoSchoeningetal.2010, author = {Wagner, Torsten and Miyamoto, Ko-ichiro and Sch{\"o}ning, Michael Josef and Yoshinobu, Tatsuo}, title = {Novel combination of digital light processing (DLP) and light-addressable potentiometric sensors (LAPS) for flexible chemical imaging}, series = {Procedia Engineering}, volume = {5}, journal = {Procedia Engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2010.09.161}, pages = {520 -- 523}, year = {2010}, abstract = {Chemical imaging systems allow the visualisation of the distribution of chemical species on the sensor surface. This work represents a new flexible approach of read out in a light-addressable potentiometric sensor (LAPS) with the help of a digital light processing (DLP) set-up. The DLP, known well for video projectors, consists of a mirror-array MEMS device which allows fast and flexible generation of light patterns. With the help of these light patterns the sensor surface of the LAPS device can be read out sequentially in a raster like scheme (scanning LAPS). The DLP approach has several advantages compared to conventional scanning LAPS set-ups, e.g., the spot size, the shape and the intensity of the light pointer can be changed easily and no mechanical movement is necessary, which reduces the size of the set-up and increases the stability and speed of measurement.}, language = {en} } @article{MiyamotoKanekoMatsuoetal.2010, author = {Miyamoto, Ko-ichiro and Kaneko, Kazumi and Matsuo, Akira and Wagner, Torsten and Kanoh, Shin`ichiro and Sch{\"o}ning, Michael Josef and Yoshinobu, Tatsuo}, title = {Miniaturized chemical imaging sensor system using an OLED display panel}, series = {Procedia Engineering}, volume = {5}, journal = {Procedia Engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2010.09.160}, pages = {516 -- 519}, year = {2010}, abstract = {The chemical imaging sensor is a semiconductor-based chemical sensor that can visualize the two-dimensional distribution of specific ions or molecules in the solution. In this study, we developed a miniaturized chemical imaging sensor system with an OLED display panel as a light source that scans the sensor plate. In the proposed configuration, the display panel is placed directly below the sensor plate and illuminates the back surface. The measured area defined by illumination can be arbitrarily customized to fit the size and the shape of the sample to be measured. The waveform of the generated photocurrent, the currentvoltage characteristics and the pH sensitivity were investigated and pH imaging with this miniaturized system was demonstrated.}, language = {en} } @article{YoshinobuMiyamotoWagneretal.2024, author = {Yoshinobu, Tatsuo and Miyamoto, Ko-ichiro and Wagner, Torsten and Sch{\"o}ning, Michael Josef}, title = {Field-effect sensors combined with the scanned light pulse technique: from artificial olfactory images to chemical imaging technologies}, series = {Chemosensors}, volume = {12}, journal = {Chemosensors}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2227-9040}, doi = {10.3390/chemosensors12020020}, pages = {Artikel 20}, year = {2024}, abstract = {The artificial olfactory image was proposed by Lundstr{\"o}m et al. in 1991 as a new strategy for an electronic nose system which generated a two-dimensional mapping to be interpreted as a fingerprint of the detected gas species. The potential distribution generated by the catalytic metals integrated into a semiconductor field-effect structure was read as a photocurrent signal generated by scanning light pulses. The impact of the proposed technology spread beyond gas sensing, inspiring the development of various imaging modalities based on the light addressing of field-effect structures to obtain spatial maps of pH distribution, ions, molecules, and impedance, and these modalities have been applied in both biological and non-biological systems. These light-addressing technologies have been further developed to realize the position control of a faradaic current on the electrode surface for localized electrochemical reactions and amperometric measurements, as well as the actuation of liquids in microfluidic devices.}, language = {en} } @article{VahidpourGuthmanArreolaetal.2022, author = {Vahidpour, Farnoosh and Guthman, Eric and Arreola, Julia and Alghazali, Yousef H. M. and Wagner, Torsten and Sch{\"o}ning, Michael Josef}, title = {Assessment of Various Process Parameters for Optimized Sterilization Conditions Using a Multi-Sensing Platform}, series = {Foods}, volume = {11}, journal = {Foods}, number = {5}, publisher = {MDPI}, address = {Basel}, issn = {2304-8158}, doi = {10.3390/foods11050660}, pages = {Artikel 660}, year = {2022}, abstract = {In this study, an online multi-sensing platform was engineered to simultaneously evaluate various process parameters of food package sterilization using gaseous hydrogen peroxide (H₂O₂). The platform enabled the validation of critical aseptic parameters. In parallel, one series of microbiological count reduction tests was performed using highly resistant spores of B. atrophaeus DSM 675 to act as the reference method for sterility validation. By means of the multi-sensing platform together with microbiological tests, we examined sterilization process parameters to define the most effective conditions with regards to the highest spore kill rate necessary for aseptic packaging. As these parameters are mutually associated, a correlation between different factors was elaborated. The resulting correlation indicated the need for specific conditions regarding the applied H₂O₂ gas temperature, the gas flow and concentration, the relative humidity and the exposure time. Finally, the novel multi-sensing platform together with the mobile electronic readout setup allowed for the online and on-site monitoring of the sterilization process, selecting the best conditions for sterility and, at the same time, reducing the use of the time-consuming and costly microbiological tests that are currently used in the food package industry.}, language = {en} } @article{WagnerWernerMiyamotoetal.2010, author = {Wagner, Torsten and Werner, Frederik and Miyamoto, Ko-ichiro and Ackermann, Hans-Josef and Yoshinobu, Tatsuo and Sch{\"o}ning, Michael Josef}, title = {FPGA-based LAPS device for the flexible design of sensing sites on functional interfaces}, series = {Physica Status Solidi (A)}, volume = {207}, journal = {Physica Status Solidi (A)}, number = {4}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6300}, doi = {10.1002/pssa.200983320}, pages = {844 -- 849}, year = {2010}, abstract = {The development of new interfaces for (bio-)chemical sensors requires comprehensive analyses and testing. The light-addressable potentiometric sensor (LAPS) can be used as a platform to investigate the sensitivity of a newly developed interface towards (bio-)chemical agents. LAPS measurements are spatially resolved by utilisation of focused light beams to define individual measurement spots. In this work, a new digitally modulated LAPS set-up based on an FPGA design will be introduced to increase the number of measurement spots, to shorten the measurement time and to improve the measurement accuracy.}, language = {en} } @article{MiyamotoSugawaraKanohetal.2010, author = {Miyamoto, Ko-ichiro and Sugawara, Yuri and Kanoh, Shin´ichiro and Yoshinobu, Tatsuo and Wagner, Torsten and Sch{\"o}ning, Michael Josef}, title = {Image correction method for the chemical imaging sensor}, series = {Sensors and Actuators B: Chemical}, volume = {144}, journal = {Sensors and Actuators B: Chemical}, number = {2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2008.10.069}, pages = {344 -- 348}, year = {2010}, abstract = {The chemical imaging sensor is a semiconductor-based chemical sensor that can visualize the spatial distribution of chemical species. For the practical application of this sensor, artifacts in the chemical images due to defects of the semiconductor substrate and contamination of the sensing surface etc. have been a major problem. An image correction method was developed to eliminate the influence of nonuniformity of individual sensor plate.}, language = {en} }