@misc{TippkoetterSiekerWiesenetal.2014, author = {Tippk{\"o}tter, Nils and Sieker, T. and Wiesen, S. and Duwe, A. and Roth, J. and Ulber, Roland}, title = {Simultane Saccharifizierung und Fermentierung (SSF) sowie Produktion von Aceton, Butanol, Ethanol (ABE) und Dicarbons{\"a}uren aus technischer Cellulose}, series = {Chemie Ingenieur Technik}, volume = {86}, journal = {Chemie Ingenieur Technik}, number = {9}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0009-286X}, doi = {10.1002/cite.201450297}, pages = {1518}, year = {2014}, abstract = {Technische Cellulose wurde als m{\"o}glicher Rohstoff zur fermentativen Produktbildung untersucht. Hierf{\"u}r wird Cellulose in der Lignocellulose-Bioraffinerie hergestellt und daraus Hydrolysat gewonnen. Die Pr{\"u}fung der technischen Hydrolysate als Substrate erfolgte anhand eines breiten Spektrums an Bioprodukten, von Kraftstoffen wie Ethanolund Butanol, bis zu den Dicarbons{\"a}uren Itacon- und Bernsteins{\"a}ure. Dabei werden Bakterien, Hefen und Pilze als Produktionsorganismen eingesetzt. Die einzelnen Herstellverfahren stellen unterschiedliche Anforderungen an die Substrathandhabung. Im Fall der Ethanol- und Butanol-Gewinnung kann eine simultane Saccharifizierung und Fermentierung (SSF) durchgef{\"u}hrt werden. Aufgrund der Produkttoxizit{\"a}t erfordert die Butanol-Herstellung dabei eine In-situ-Produktabtrennung durch L{\"o}semittelimpr{\"a}gnierte Partikel. Die Herstellung der beiden Dicarbons{\"a}uren unterscheidet sich in der Sensitivit{\"a}t der verwendeten Mikroorganismen gegen{\"u}ber Inhibitoren, die in Spuren im Hydrolysat enthalten sind. Die Bernteins{\"a}urebildung mit Actinobacillussuccinogenes kann mit unbehandeltem Hydrolysat erfolgen. Dagegen erfordert die Gewinnung von Itacons{\"a}ure mit A. terreus eine Detoxifizierung des Hydrolysats. Insgesamt konnte gezeigt werden, dass s{\"a}mtliche Bioraffinerie-Hydrolysate als Substrate f{\"u}r unterschiedliche Fermentationen geeignet sind.}, language = {de} } @misc{WiesenTippkoetterDuweetal.2012, author = {Wiesen, S. and Tippk{\"o}tter, Nils and Duwe, A. and Ulber, Roland}, title = {Aceton-Butanol-Ethanol (ABE)-Fermentation von Organosolv-Holzhydrolysaten}, series = {Chemie Ingenieur Technik}, volume = {84}, journal = {Chemie Ingenieur Technik}, number = {8}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0009-286X}, doi = {10.1002/cite.201250262}, pages = {1308}, year = {2012}, abstract = {Die L{\"o}sungsmittelherstellung durch Clostridien konnte wirtschaftlich nicht mit der chemischen Synthese von L{\"o}sungsmitteln auf Erd{\"o}lbasis konkurrieren und wurde in den fr{\"u}hen 1960er Jahren nahezu vollst{\"a}ndig eingestellt. Das Interesse an nachwachsenden Rohstoffen hat in den letzten Jahren zu einem Wiederaufleben der ABE-Fermentation gef{\"u}hrt. Aufgrund seiner h{\"o}heren Energiedichte im Vergleich zu Ethanol ist Biobutanol als Energietr{\"a}gerbesonders interessant und bietet sich z. B. als Produkt einer Bioraffinerie der 2. Generation an. F{\"u}r die beschriebenen Experimente wird durch das Organosolv-Verfahren aufgeschlossenes Buchenholz verwendet. Der Faserstoff wird mithilfe von CTec2-Enzymen hydrolysiert, wobei der erhaltene {\"U}berstand eine Glucosekonzentration von 66 g L⁻¹ aufweist. Auf der Basis dieses Materials k{\"o}nnen mit Clostridium acetobutylicum Butanol-Ausbeuten erzielt werden, die mit denen unter Verwendung von reinen Zuckern vergleichbar sind. Dem Problem der hohen Produktinhibierung wird mit einer In-situ-Produktaufarbeitung begegnet. Mithilfe von L{\"o}sungsmittelimpr{\"a}gnierten Partikeln (SIPs) kann die Produktausbeute drastisch gesteigert werden, indem die gebildeten L{\"o}sungsmittel durch das auf dem Partikel impr{\"a}gnierte L{\"o}sungsmittel w{\"a}hrend der Fermentation extrahiert werden. Zudem wird hierdurch die weitere Produktaufarbeitungstark vereinfacht.}, language = {de} } @misc{WiesenTippkoetterMuffleretal.2012, author = {Wiesen, S. and Tippk{\"o}tter, Nils and Muffler, K. and Sohling, U. and Ruf, F. and Ulber, Roland}, title = {Nutzung von Rohglycerin: Rohglycerin-Aufarbeitung, Herstellung von 1, 3-Propandiol und R{\"u}ckgewinnung von Fetts{\"a}uren}, series = {Chemie Ingenieur Technik}, volume = {84}, journal = {Chemie Ingenieur Technik}, number = {8}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0009-286X}, doi = {10.1002/cite.201250265}, pages = {1296}, year = {2012}, abstract = {Die fermentative Verwertung von Rohglycerin setzt je nach Herstellungsmethode und Produktionsorganismus eine Vorbehandlung des Glycerins zur Entfernung von Produktinhibitoren voraus. Durch den Einsatz von Hydrotalcit-Adsorbern k{\"o}nnen die im Rohglycerin enthaltenen Fetts{\"a}uren entfernt werden. Durch diese einfache Aufarbeitungsmethode ist ein mit reinem Glycerin vergleichbarer Umsatz von stark mit Fetts{\"a}uren verunreinigtem Rohglycerin zu 1,3-Propandiol (PDO) m{\"o}glich. Die durch den Hydrotalcit gebundenen Fetts{\"a}uren lassen sich mit einem Ethanol-Wasser-Gemisch eluieren. Somit kann der Adsorber regeneriert und die Fetts{\"a}uren wieder der Wertsch{\"o}pfungskette zugef{\"u}hrt werden. Im Fed-Batch-Experiment kann mit C. diolis eine PDO-Konzentration von {\"u}ber 50 g L⁻¹ unter Verwendung des aufgereinigten Rohglycerins erzielt werden. In der industriellen Produktion wird PDO momentan destillativ aufgearbeitet. Ein adsorptives Aufarbeitungsverfahren kann den Energiebedarf des Herstellungsprozesses drastisch senken. Auf der Suche nach einem geeigneten Material wurde ein Adsorberscreening in Bezug auf die Bindungseigenschaften durchgef{\"u}hrt. Mit einem b-Zeolith der Firma S{\"u}d ChemieAG konnte bisher die h{\"o}chste Beladung im Modellsystem von 120 mg PDO/gAdsorber erreicht werden.}, language = {de} } @misc{TippkoetterWiesenThieletal.2014, author = {Tippk{\"o}tter, Nils and Wiesen, S. and Thiel, A. and Muffler, K. and Ulber, Roland}, title = {Biotechnologische Wertstoffgewinnung entlang der Prozessketten Gr{\"u}ner und Pflanzen{\"o}l-Bioraffinerien}, series = {Chemie Ingenieur Technik}, volume = {86}, journal = {Chemie Ingenieur Technik}, number = {9}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0009-286X}, doi = {10.1002/cite.201450283}, pages = {1605}, year = {2014}, abstract = {Der nachwachsende Rohstoff Raps ist in großen Mengen verf{\"u}gbar und eine Quelle f{\"u}r Biomolek{\"u}le mit hohem Wertsch{\"o}pfungspotenzial. Entwicklungen zur biotechnologischen Wertstoffgewinnung werden dabei schwerpunktm{\"a}ßig in den Bereichen Aufarbeitung und Funktionalisierung von Polyphenolen und Fetten betrieben. Bei der Verarbeitung der Pflanzenmaterialien werden dabei insbesondere Verfahren zur adsorptiven Aufreinigung und Auftrennung mittels Materialien mit modifizierten Bleicherden und anderen organischen oder anorganischen Adsorbentien untersucht. Ferner wurden f{\"u}r die Aufreinigung von Polyphenolen adsorptive sowie extraktive Prozesse entwickelt. Bei den Entwicklungen wird ber{\"u}cksichtigt, dass Bioraffinerien auf eine fortw{\"a}hrende Gew{\"a}hrleistung eines hohen Produktions- bzw. Lieferbedarfs nachwachsender Rohstoffe angewiesen sind. Somit werden Optionen dezentraler regionaler Vorbehandlungs- und Wertsch{\"o}pfungsketten in der N{\"a}he landwirtschaftlicher Betriebe einbezogen. Neben neuen Aufreinigungsverfahren werden mikrobielle und enzymatische Prozesse zur wertsteigernden Umsetzung von Glycerin, Polyphenolen und Zuckermonomeren vorgestellt sowie Limitierungen nachwachsender Rohstoffe der 2. Generation diskutiert.}, language = {de} }