@article{KapplerForm1985, author = {Kappler, Heinz and Form, J{\"u}rgen}, title = {Interaktive Computergraphik im Konstruktionsbuero. Einfuehrung und erste Erfahrungen mit CAD / J{\"u}rgen Form; Heinz Kappler}, series = {Heitkamp Mitteilungen (1985)}, journal = {Heitkamp Mitteilungen (1985)}, year = {1985}, language = {de} } @book{KapplerSchueller1981, author = {Kappler, Heinz and Schu{\"e}ller, Gerhart I.}, title = {Zuverl{\"a}ssigkeitsorientierte Bemessung von Meeresplattformen / G. I. Schueller}, publisher = {Technische Universit{\"a}t, LKI}, address = {M{\"u}nchen}, pages = {71 S.}, year = {1981}, language = {de} } @inproceedings{KerpenBungSchlurmann2010, author = {Kerpen, N. B. and Bung, Daniel Bernhard and Schlurmann, Torsten}, title = {Physical model investigations of ships passing through a lock}, series = {Hydraulic structures: useful water harvesting systems or relics? : Third International Junior Researcher and Engineer Workshop on Hydraulic Structures (IJREWHS'10) : Edinburgh, Scotland, U.K., 2-3 May 2010}, booktitle = {Hydraulic structures: useful water harvesting systems or relics? : Third International Junior Researcher and Engineer Workshop on Hydraulic Structures (IJREWHS'10) : Edinburgh, Scotland, U.K., 2-3 May 2010}, editor = {Janssen, Robert}, publisher = {School of Civil Engineeering, The University of Queensland}, address = {Brisbane}, organization = {International Junior Researcher and Engineer Workshop on Hydraulic Structures <3, 2010, Edinburgh>}, isbn = {9781742720159}, pages = {93 -- 100}, year = {2010}, language = {en} } @inproceedings{KerpenBungSchlurmann2010, author = {Kerpen, N. B. and Bung, Daniel Bernhard and Schlurmann, Torsten}, title = {Physical model investigations of pressure distributions next to ships passing through a lock}, series = {5th Chinese-German Joint Symposium on Hydraulic and Ocean Engineering : CG JOINT 2010}, booktitle = {5th Chinese-German Joint Symposium on Hydraulic and Ocean Engineering : CG JOINT 2010}, publisher = {Univ. Press}, address = {Tianjin}, organization = {Chinese-German Joint Symposium on Hydraulic and Ocean Engineering <5, 2010, Tianjin>}, isbn = {978-7-5618-3671-2}, pages = {514 -- 519}, year = {2010}, language = {en} } @inproceedings{KerpenVerwornBungetal.2011, author = {Kerpen, N. and Verworn, F. and Bung, Daniel Bernhard and Daemrich, K.-F. and Schlurmann, Torsten}, title = {Ermittlung von Wellen{\"u}berlaufmengen an Sturmflutschutzw{\"a}nden auf Deichen}, series = {Maritimer Wasserbau und K{\"u}steningenieurwesen : 8. FZK-Kolloquium : Hannover 10. M{\"a}rz, 2011}, booktitle = {Maritimer Wasserbau und K{\"u}steningenieurwesen : 8. FZK-Kolloquium : Hannover 10. M{\"a}rz, 2011}, organization = {Forschungszentrum K{\"u}ste (FZK)}, issn = {1610-5249}, pages = {63 -- 68}, year = {2011}, language = {de} } @article{KerpenBungValeroetal.2017, author = {Kerpen, Nils B. and Bung, Daniel Bernhard and Valero, Daniel and Schlurmann, Torsten}, title = {Energy dissipation within the wave run-up at stepped revetments}, series = {Journal of Ocean University of China}, volume = {16}, journal = {Journal of Ocean University of China}, number = {4}, publisher = {Springer}, address = {Berlin}, issn = {1993-5021}, doi = {10.1007/s11802-017-3355-z}, pages = {649 -- 654}, year = {2017}, language = {en} } @inproceedings{KerpenBungValeroetal.2016, author = {Kerpen, Nils B. and Bung, Daniel Bernhard and Valero, Daniel and Schlurmann, Torsten}, title = {Energy dissipation within the wave run-up at stepped revetments}, series = {8th Chinese-German Joint Symposium on Hydraulic and Ocean Engineering, Qingdao, China}, booktitle = {8th Chinese-German Joint Symposium on Hydraulic and Ocean Engineering, Qingdao, China}, pages = {6 Seiten}, year = {2016}, language = {en} } @inproceedings{KerpenSchooneesSchlurmannetal.2019, author = {Kerpen, Nils B. and Schoonees, Talia and Schlurmann, Torsten and Valero, Daniel and Bung, Daniel Bernhard}, title = {waveSTEPS - Wellenauf- und Wellen{\"u}berlauf an getreppten Deckwerken}, series = {24. KFKI-Seminar 2019, 21.11.2019}, booktitle = {24. KFKI-Seminar 2019, 21.11.2019}, pages = {2 Seiten}, year = {2019}, language = {de} } @article{KerresGredigkHoffmannJatheetal.2020, author = {Kerres, Karsten and Gredigk-Hoffmann, Sylvia and Jathe, R{\"u}diger and Orlik, Stefan and Sariyildiz, Mustafa and Schmidt, Torsten and Sympher, Klaus-Jochen and Uhlenbroch, Adrian}, title = {Future approaches for sewer system condition assessment}, series = {Water Practice \& Technology}, journal = {Water Practice \& Technology}, number = {15 (2)}, publisher = {IWA Publishing}, address = {London}, issn = {1751-231X}, doi = {10.2166/wpt.2020.027}, pages = {386 -- 393}, year = {2020}, abstract = {Different analytical approaches exist to describe the structural substance or wear reserve of sewer systems. The aim is to convert engineering assessments of often complex defect patterns into computational algorithms and determine a substance class for a sewer section or manhole. This analytically determined information is essential for strategic rehabilitation planning processes up to network level, as it corresponds to the most appropriate rehabilitation type and can thus provide decision-making support. Current calculation methods differ clearly from each other in parts, so that substance classes determined by the different approaches are only partially comparable with each other. The objective of the German R\&D cooperation project 'SubKanS' is to develop a methodology for classifying the specific defect patterns resulting from the interaction of all the individual defects, and their severities and locations. The methodology takes into account the structural substance of sewer sections and manholes, based on real data and theoretical considerations analogous to the condition classification of individual defects. The result is a catalogue of defect patterns and characteristics, as well as associated structural substance classifications of sewer systems (substance classes). The methodology for sewer system substance classification is developed so that the classification of individual defects can be transferred into a substance class of the sewer section or manhole, eventually taking into account further information (e.g. pipe material, nominal diameter, etc.). The result is a validated methodology for automated sewer system substance classification.}, language = {en} } @article{KerresSiekmann2017, author = {Kerres, Karsten and Siekmann, Marko}, title = {Wie kommuniziere ich prognosegest{\"u}tzte Instandhaltungsstrategien erfolgreich in politischen Entscheidungsgremien?}, series = {3 R. Fachzeitschrift f{\"u}r sichere und effiziente Rohleitungssysteme}, journal = {3 R. Fachzeitschrift f{\"u}r sichere und effiziente Rohleitungssysteme}, number = {12}, publisher = {Vulkan-Verl.}, address = {Essen}, issn = {2191-9798}, pages = {47 -- 51}, year = {2017}, language = {de} }