@inproceedings{PuetzBaierBrauneretal.2022, author = {P{\"u}tz, Sebastian and Baier, Ralph and Brauner, Philipp and Brillowski, Florian and Dammers, Hannah and Liehner, Luca and Mertens, Alexander and Rodemann, Niklas and Schneider, Sebastian and Schollemann, Alexander and Steuer-Dankert, Linda and Vervier, Luisa and Gries, Thomas and Leicht-Scholten, Carmen and Nagel, Saskia K. and Piller, Frank T. and Schuh, G{\"u}nther and Ziefle, Martina and Nitsch, Verena}, title = {An interdisciplinary view on humane interfaces for digital shadows in the internet of production}, series = {2022 15th International Conference on Human System Interaction (HSI)}, booktitle = {2022 15th International Conference on Human System Interaction (HSI)}, publisher = {IEEE}, isbn = {978-1-6654-6823-7 (Print)}, issn = {2158-2246 (Print)}, doi = {10.1109/HSI55341.2022.9869467}, pages = {8 Seiten}, year = {2022}, abstract = {Digital shadows play a central role for the next generation industrial internet, also known as Internet of Production (IoP). However, prior research has not considered systematically how human actors interact with digital shadows, shaping their potential for success. To address this research gap, we assembled an interdisciplinary team of authors from diverse areas of human-centered research to propose and discuss design and research recommendations for the implementation of industrial user interfaces for digital shadows, as they are currently conceptualized for the IoP. Based on the four use cases of decision support systems, knowledge sharing in global production networks, human-robot collaboration, and monitoring employee workload, we derive recommendations for interface design and enhancing workers' capabilities. This analysis is extended by introducing requirements from the higher-level perspectives of governance and organization.}, language = {en} } @inproceedings{ChurilovDumovaJovanoskaButenweg2013, author = {Churilov, Sergej and Dumova-Jovanoska, Elena and Butenweg, Christoph}, title = {Seismic verification of existing masonry buildings and strengthening with reinforced concrete jackets}, series = {Proceedings - Vienna Congress on Recent Advances in Earthquake Engineering and Structural Dynamics 2013 (VEESD 2013)}, booktitle = {Proceedings - Vienna Congress on Recent Advances in Earthquake Engineering and Structural Dynamics 2013 (VEESD 2013)}, editor = {Adam, Christoph and Heuer, Rudolf and Lenhardt, Wolfgang and Schranz, Christian}, isbn = {978-3-902749-04-8}, year = {2013}, abstract = {A methodology for assessment, seismic verification and strengthening of existing masonry buildings is presented in this paper. The verification is performed using a calculation model calibrated with the results from ambient vibration measurements. The calibrated model serves as an input for a deformation-based verification procedure based on the Capacity Spectrum Method (CSM). The bearing capacity of the building is calculated from experimental capacity curves of the individual walls idealized with bilinear elastic-perfectly plastic curves. The experimental capacity curves were obtained from in-plane cyclic loading tests on unreinforced and strengthened masonry walls with reinforced concrete jackets. The seismic action is compared with the load-bearing capacity of the building considering non-linear material behavior with its post-peak capacity. The application of the CSM to masonry buildings and the influence of a traditional strengthening method are demonstrated on the example of a public school building in Skopje, Macedonia.}, language = {en} } @inproceedings{ButenwegNorda2013, author = {Butenweg, Christoph and Norda, Hannah}, title = {Nonlinear analysis of masonry structures according to Eurocode 8}, series = {Proceedings - Vienna Congress on Recent Advances in Earthquake Engineering and Structural Dynamics 2013 (VEESD 2013)}, booktitle = {Proceedings - Vienna Congress on Recent Advances in Earthquake Engineering and Structural Dynamics 2013 (VEESD 2013)}, editor = {Adam, Christoph and Heuer, Rudolf and Lenhardt, Wolfgang and Schranz, Christian}, isbn = {978-3-902749-04-8}, year = {2013}, language = {en} } @inproceedings{AltayButenwegKlinkel2013, author = {Altay, Okyay and Butenweg, Christoph and Klinkel, Sven}, title = {Vibration control of slender structures by semi-active tuned liquid column dampers}, series = {Conference of the ASCE Engineering Mechanics Institute , Evanston, IL , USA , EMI 2013 , 2013-08-04 - 2013-08-07}, booktitle = {Conference of the ASCE Engineering Mechanics Institute , Evanston, IL , USA , EMI 2013 , 2013-08-04 - 2013-08-07}, pages = {1 Seite}, year = {2013}, language = {en} } @inproceedings{AltayButenwegKlinkel2014, author = {Altay, Okyay and Butenweg, Christoph and Klinkel, Sven}, title = {Vibration mitigation of wind turbine towers by a new semiactive Tuned Liquid Column Damper}, series = {6. Word Congress on Structural Control and Monitoring, 15 - 17 July, 2014 Barcelona,Spain}, booktitle = {6. Word Congress on Structural Control and Monitoring, 15 - 17 July, 2014 Barcelona,Spain}, year = {2014}, language = {en} } @inproceedings{TaddeiLozanaMicheletal.2015, author = {Taddei, Francesca and Lozana, Lara and Michel, Philipp and Butenweg, Christoph and Klinkel, Sven}, title = {Practical recommendations for the foundation design of onshore wind turbines including soil-structure interaction}, series = {5th International Conference on Computational Methods in Structural , Hersonissos, Greece Dynamics and Earthquake Engineering, COMPDYN 2015, 25.05.2015-27.05.2015, Hersonissos, Greece.}, booktitle = {5th International Conference on Computational Methods in Structural , Hersonissos, Greece Dynamics and Earthquake Engineering, COMPDYN 2015, 25.05.2015-27.05.2015, Hersonissos, Greece.}, editor = {Papadrakakis, Manolis and Papadrakakis, M. and Papadopoulos, V. and Plevris, V.}, year = {2015}, language = {en} } @inproceedings{ButenwegMarinkovićPaveseetal.2021, author = {Butenweg, Christoph and Marinković, Marko and Pavese, Alberto and Lanese, Igor and Hoffmeister, Benno and Pinkawa, Marius and Vulcu, Mihai-Cristian and Bursi, Oreste and Nardin, Chiara and Paolacci, Fabrizio and Quinci, Gianluca and Fragiadakis, Michalis and Weber, Felix and Huber, Peter and Renault, Philippe and G{\"u}ndel, Max and Dyke, Shirley and Ciucci, M. and Marino, A.}, title = {Seismic performance of multi-component systems in special risk industrial facilities}, series = {17. World Conference on Earthquake Engineering , Sendai , Japan , 17WCEE , 2021-09-27 - 2021-10-02}, booktitle = {17. World Conference on Earthquake Engineering , Sendai , Japan , 17WCEE , 2021-09-27 - 2021-10-02}, year = {2021}, abstract = {Past earthquakes demonstrated the high vulnerability of industrial facilities equipped with complex process technologies leading to serious damage of the process equipment and multiple and simultaneous release of hazardous substances in industrial facilities. Nevertheless, the design of industrial plants is inadequately described in recent codes and guidelines, as they do not consider the dynamic interaction between the structure and the installations and thus the effect of seismic response of the installations on the response of the structure and vice versa. The current code-based approach for the seismic design of industrial facilities is considered not enough for ensure proper safety conditions against exceptional event entailing loss of content and related consequences. Accordingly, SPIF project (Seismic Performance of Multi- Component Systems in Special Risk Industrial Facilities) was proposed within the framework of the European H2020 - SERA funding scheme (Seismology and Earthquake Engineering Research Infrastructure Alliance for Europe). The objective of the SPIF project is the investigation of the seismic behavior of a representative industrial structure equipped with complex process technology by means of shaking table tests. The test structure is a three-story moment resisting steel frame with vertical and horizontal vessels and cabinets, arranged on the three levels and connected by pipes. The dynamic behavior of the test structure and installations is investigated with and without base isolation. Furthermore, both firmly anchored and isolated components are taken into account to compare their dynamic behavior and interactions with each other. Artificial and synthetic ground motions are applied to study the seismic response at different PGA levels. After each test, dynamic identification measurements are carried out to characterize the system condition. The contribution presents the numerical simulations to calibrate the tests on the prototype, the experimental setup of the investigated structure and installations, selected measurement data and finally describes preliminary experimental results.}, language = {en} } @inproceedings{GoemmelFrauenrathOttenetal.2010, author = {G{\"o}mmel, Andreas and Frauenrath, Tobias and Otten, Mario and Niendorf, Thoralf and Butenweg, Christoph}, title = {In-vivo measurements of vocal fold geometry using Magnetic Resonance Imaging}, series = {Fortschritte der Akustik - DAGA 2010 36. Jahrestagung f{\"u}r Akustik, 15. bis 18. M{\"a}rz 2010 in Berlin}, booktitle = {Fortschritte der Akustik - DAGA 2010 36. Jahrestagung f{\"u}r Akustik, 15. bis 18. M{\"a}rz 2010 in Berlin}, editor = {M{\"o}ser, Michael and Schulte-Fortkamp, Brgitte and Ochmann, Martin}, publisher = {Deutsche Gesellschaft f{\"u}r Akustik}, address = {Berlin}, isbn = {978-3-9808659-8-2}, year = {2010}, language = {de} } @inproceedings{GedleSchmitzGielenetal.2022, author = {Gedle, Yibekal and Schmitz, Mark and Gielen, Hans and Schmitz, Pascal and Herrmann, Ulf and Teixeira Boura, Cristiano Jos{\´e} and Mahdi, Zahra and Caminos, Ricardo Alexander Chico and Dersch, J{\"u}rgen}, title = {Analysis of an integrated CSP-PV hybrid power plant}, series = {SolarPACES 2020}, booktitle = {SolarPACES 2020}, number = {2445 / 1}, publisher = {AIP conference proceedings / American Institute of Physics}, address = {Melville, NY}, isbn = {978-0-7354-4195-8}, issn = {1551-7616 (online)}, doi = {10.1063/5.0086236}, pages = {9 Seiten}, year = {2022}, abstract = {In the past, CSP and PV have been seen as competing technologies. Despite massive reductions in the electricity generation costs of CSP plants, PV power generation is - at least during sunshine hours - significantly cheaper. If electricity is required not only during the daytime, but around the clock, CSP with its inherent thermal energy storage gets an advantage in terms of LEC. There are a few examples of projects in which CSP plants and PV plants have been co-located, meaning that they feed into the same grid connection point and ideally optimize their operation strategy to yield an overall benefit. In the past eight years, TSK Flagsol has developed a plant concept, which merges both solar technologies into one highly Integrated CSP-PV-Hybrid (ICPH) power plant. Here, unlike in simply co-located concepts, as analyzed e.g. in [1] - [4], excess PV power that would have to be dumped is used in electric molten salt heaters to increase the storage temperature, improving storage and conversion efficiency. The authors demonstrate the electricity cost sensitivity to subsystem sizing for various market scenarios, and compare the resulting optimized ICPH plants with co-located hybrid plants. Independent of the three feed-in tariffs that have been assumed, the ICPH plant shows an electricity cost advantage of almost 20\% while maintaining a high degree of flexibility in power dispatch as it is characteristic for CSP power plants. As all components of such an innovative concept are well proven, the system is ready for commercial market implementation. A first project is already contracted and in early engineering execution.}, language = {en} } @inproceedings{MahdiDerschSchmitzetal.2022, author = {Mahdi, Zahra and Dersch, J{\"u}rgen and Schmitz, Pascal and Dieckmann, Simon and Caminos, Ricardo Alexander Chico and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf and Schwager, Christian and Schmitz, Mark and Gielen, Hans and Gedle, Yibekal and B{\"u}scher, Rauno}, title = {Technical assessment of Brayton cycle heat pumps for the integration in hybrid PV-CSP power plants}, series = {SOLARPACES 2020}, booktitle = {SOLARPACES 2020}, number = {2445 / 1}, publisher = {AIP conference proceedings / American Institute of Physics}, address = {Melville, NY}, isbn = {978-0-7354-4195-8}, issn = {1551-7616 (online)}, doi = {10.1063/5.0086269}, pages = {11 Seiten}, year = {2022}, abstract = {The hybridization of Concentrated Solar Power (CSP) and Photovoltaics (PV) systems is a promising approach to reduce costs of solar power plants, while increasing dispatchability and flexibility of power generation. High temperature heat pumps (HT HP) can be utilized to boost the salt temperature in the thermal energy storage (TES) of a Parabolic Trough Collector (PTC) system from 385 °C up to 565 °C. A PV field can supply the power for the HT HP, thus effectively storing the PV power as thermal energy. Besides cost-efficiently storing energy from the PV field, the power block efficiency of the overall system is improved due to the higher steam parameters. This paper presents a technical assessment of Brayton cycle heat pumps to be integrated in hybrid PV-CSP power plants. As a first step, a theoretical analysis was carried out to find the most suitable working fluid. The analysis included the fluids Air, Argon (Ar), Nitrogen (N2) and Carbon dioxide (CO2). N2 has been chosen as the optimal working fluid for the system. After the selection of the ideal working medium, different concepts for the arrangement of a HT HP in a PV-CSP hybrid power plant were developed and simulated in EBSILON®Professional. The concepts were evaluated technically by comparing the number of components required, pressure losses and coefficient of performance (COP).}, language = {en} }