@book{Pieper2019, author = {Pieper, Martin}, title = {Quantenmechanik: Einf{\"u}hrung in die mathematische Formulierung}, publisher = {Springer Spektrum}, address = {Wiesbaden}, isbn = {978-3-658-28328-5}, doi = {10.1007/978-3-658-28329-2}, pages = {XI, 33 Seiten}, year = {2019}, language = {de} } @article{RiekeStollenwerkDahmenetal.2018, author = {Rieke, Christian and Stollenwerk, Dominik and Dahmen, Markus and Pieper, Martin}, title = {Modeling and optimization of a biogas plant for a demand-driven energy supply}, series = {Energy}, volume = {145}, journal = {Energy}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0360-5442}, doi = {10.1016/j.energy.2017.12.073}, pages = {657 -- 664}, year = {2018}, abstract = {Due to the Renewable Energy Act, in Germany it is planned to increase the amount of renewable energy carriers up to 60\%. One of the main problems is the fluctuating supply of wind and solar energy. Here biogas plants provide a solution, because a demand-driven supply is possible. Before running such a plant, it is necessary to simulate and optimize the process. This paper provides a new model of a biogas plant, which is as accurate as the standard ADM1 model. The advantage compared to ADM1 is that it is based on only four parameters compared to 28. Applying this model, an optimization was installed, which allows a demand-driven supply by biogas plants. Finally the results are confirmed by several experiments and measurements with a real test plant.}, language = {en} } @article{DotzauerPfeifferLaueretal.2019, author = {Dotzauer, Martin and Pfeiffer, Diana and Lauer, Markus and Pohl, Marcel and Mauky, Eric and B{\"a}r, Katharina and Sonnleitner, Matthias and Z{\"o}rner, Wilfried and Hudde, Jessica and Schwarz, Bj{\"o}rn and Faßauer, Burkhardt and Dahmen, Markus and Rieke, Christian and Herbert, Johannes and Thr{\"a}n, Daniela}, title = {How to measure flexibility - Performance indicators for demand driven power generation from biogas plants}, series = {Renewable Energy}, journal = {Renewable Energy}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0960-1481}, doi = {10.1016/j.renene.2018.10.021}, pages = {135 -- 146}, year = {2019}, language = {en} } @incollection{BorchertTenbrake2020, author = {Borchert, J{\"o}rg and Tenbrake, Andre}, title = {Bewirtschaftung von Flexibilit{\"a}t {\"u}ber Microservices eines Plattformanbieters}, series = {Realisierung Utility 4.0 Band 1}, booktitle = {Realisierung Utility 4.0 Band 1}, publisher = {Springer Vieweg}, address = {Wiesbaden}, isbn = {978-3-658-25332-5}, doi = {10.1007/978-3-658-25332-5_37}, pages = {615 -- 626}, year = {2020}, abstract = {Die Energiewirtschaft befindet sich in einem starken Wandel, der v. a. durch die Energiewende und Digitalisierung Druck auf s{\"a}mtliche Marktteilnehmer aus{\"u}bt. Das klassische Gesch{\"a}ftsmodell des Energieversorgungsunternehmens ver{\"a}ndert sich dabei grundlegend. Der kontinuierlich ansteigende Einsatz dezentraler und volatiler Erzeugungsanlagen macht die Identifikation von Flexibilit{\"a}tspotenzialen notwendig, um weiterhin eine hohe Versorgungssicherheit zu gew{\"a}hrleisten. Dieser Schritt ist nur mit einem hohen Digitalisierungsgrad m{\"o}glich. Eine funktionale Plattform mit Microservices, die zu Gesch{\"a}ftsprozessen verbunden werden k{\"o}nnen, wird als M{\"o}glichkeit zur Aktivierung der Flexibilit{\"a}t und Digitalisierung der Energieversorgungsunternehmen im Folgenden vorgestellt.}, language = {de} } @article{RuppRiekeHandschuhetal.2020, author = {Rupp, Matthias and Rieke, Christian and Handschuh, Nils and Kuperjans, Isabel}, title = {Economic and ecological optimization of electric bus charging considering variable electricity prices and CO₂eq intensities}, series = {Transportation Research Part D: Transport and Environment}, volume = {81}, journal = {Transportation Research Part D: Transport and Environment}, number = {Article 102293}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1361-9209}, doi = {10.1016/j.trd.2020.102293}, year = {2020}, abstract = {In many cities, diesel buses are being replaced by electric buses with the aim of reducing local emissions and thus improving air quality. The protection of the environment and the health of the population is the highest priority of our society. For the transport companies that operate these buses, not only ecological issues but also economic issues are of great importance. Due to the high purchase costs of electric buses compared to conventional buses, operators are forced to use electric vehicles in a targeted manner in order to ensure amortization over the service life of the vehicles. A compromise between ecology and economy must be found in order to both protect the environment and ensure economical operation of the buses. In this study, we present a new methodology for optimizing the vehicles' charging time as a function of the parameters CO₂eq emissions and electricity costs. Based on recorded driving profiles in daily bus operation, the energy demands of conventional and electric buses are calculated for the passenger transportation in the city of Aachen in 2017. Different charging scenarios are defined to analyze the influence of the temporal variability of CO₂eq intensity and electricity price on the environmental impact and economy of the bus. For every individual day of a year, charging periods with the lowest and highest costs and emissions are identified and recommendations for daily bus operation are made. To enable both the ecological and economical operation of the bus, the parameters of electricity price and CO₂ are weighted differently, and several charging periods are proposed, taking into account the priorities previously set. A sensitivity analysis is carried out to evaluate the influence of selected parameters and to derive recommendations for improving the ecological and economic balance of the battery-powered electric vehicle. In all scenarios, the optimization of the charging period results in energy cost savings of a maximum of 13.6\% compared to charging at a fixed electricity price. The savings potential of CO₂eq emissions is similar, at 14.9\%. From an economic point of view, charging between 2 a.m. and 4 a.m. results in the lowest energy costs on average. The CO₂eq intensity is also low in this period, but midday charging leads to the largest savings in CO₂eq emissions. From a life cycle perspective, the electric bus is not economically competitive with the conventional bus. However, from an ecological point of view, the electric bus saves on average 37.5\% CO₂eq emissions over its service life compared to the diesel bus. The reduction potential is maximized if the electric vehicle exclusively consumes electricity from solar and wind power.}, language = {en} } @inproceedings{PaulsenHoffstadtKrafftetal.2020, author = {Paulsen, Svea and Hoffstadt, Kevin and Krafft, Simone and Leite, A. and Zang, J. and Fonseca-Zang, W. and Kuperjans, Isabel}, title = {Continuous biogas production from sugarcane as sole substrate}, series = {Energy Reports}, volume = {6}, booktitle = {Energy Reports}, number = {Supplement 1}, publisher = {Elsevier}, doi = {10.1016/j.egyr.2019.08.035}, pages = {153 -- 158}, year = {2020}, abstract = {A German-Brazilian research project investigates sugarcane as an energy plant in anaerobic digestion for biogas production. The aim of the project is a continuous, efficient, and stable biogas process with sugarcane as the substrate. Tests are carried out in a fermenter with a volume of 10 l. In order to optimize the space-time load to achieve a stable process, a continuous process in laboratory scale has been devised. The daily feed in quantity and the harvest time of the substrate sugarcane has been varied. Analyses of the digester content were conducted twice per week to monitor the process: The ratio of inorganic carbon content to volatile organic acid content (VFA/TAC), the concentration of short-chain fatty acids, the organic dry matter, the pH value, and the total nitrogen, phosphate, and ammonium concentrations were monitored. In addition, the gas quality (the percentages of CO₂, CH₄, and H₂) and the quantity of the produced gas were analyzed. The investigations have exhibited feasible and economical production of biogas in a continuous process with energy cane as substrate. With a daily feeding rate of 1.68gᵥₛ/l*d the average specific gas formation rate was 0.5 m3/kgᵥₛ. The long-term study demonstrates a surprisingly fast metabolism of short-chain fatty acids. This indicates a stable and less susceptible process compared to other substrates.}, language = {en} } @book{Pieper2021, author = {Pieper, Martin}, title = {Quantum mechanics: Introduction to mathematical formulation}, publisher = {Springer}, address = {Wiesbaden}, isbn = {978-3-658-32644-9}, doi = {10.1007/978-3-658-32645-6}, pages = {XIII, 33}, year = {2021}, abstract = {Anyone who has always wanted to understand the hieroglyphs on Sheldon's blackboard in the TV series The Big Bang Theory or who wanted to know exactly what the fate of Schr{\"o}dinger's cat is all about will find a short, descriptive introduction to the world of quantum mechanics in this essential. The text particularly focuses on the mathematical description in the Hilbert space. The content goes beyond popular scientific presentations, but is nevertheless suitable for readers without special prior knowledge thanks to the clear examples.}, language = {en} } @incollection{JordanKatzPieper2021, author = {Jordan, Frank and Katz, Christiane and Pieper, Martin}, title = {Online-Kollaboration in der Mathematik: Ein Design-Based-Research-Projekt}, series = {Forschungsimpulse f{\"u}r hybrides Lehren und Lernen an Hochschulen}, booktitle = {Forschungsimpulse f{\"u}r hybrides Lehren und Lernen an Hochschulen}, publisher = {TH K{\"o}ln}, address = {K{\"o}ln}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:832-cos4-9465}, pages = {245 -- 261}, year = {2021}, abstract = {Die Studie er{\"o}rtert anhand eines Fallbeispiels aus der Mathematik f{\"u}r Ingenieur*innen, wie didaktische Gestaltungsprinzipien f{\"u}r Soziale Pr{\"a}senz, Kollaboration und das L{\"o}sen von praxisnahen Problemen mit mathematischem Denken in einer Online-Umgebung aussehen k{\"o}nnen. Hierf{\"u}r zieht der Beitrag den forschungsmethodologischen Rahmen Design-Based Research (DBR) hinzu und berichtet {\"u}ber Zwischenergebnisse. DBR wird an dieser Stelle als eine systematische Herangehensweise an kurzfristige Lehrver{\"a}nderungen und als Chance auf dem Weg zu einer neuen Hochschullehre nach der COVID-19-Pandemie dargestellt, die theoretische und empirische Erkenntnisse mit Praxisverkn{\"u}pfung und -relevanz vereint.}, language = {de} } @article{NobisSchmittSchemmetal.2020, author = {Nobis, Moritz and Schmitt, Carlo and Schemm, Ralf and Schnettler, Armin}, title = {Pan-European CVAR-constrained stochastic unit commitment in day-ahead and intraday electricity markets}, series = {Energies}, volume = {13}, journal = {Energies}, number = {Art. 2339}, publisher = {MDPI}, address = {Basel}, issn = {1996-1073}, doi = {10.3390/en13092339}, pages = {1 -- 35}, year = {2020}, abstract = {The fundamental modeling of energy systems through individual unit commitment decisions is crucial for energy system planning. However, current large-scale models are not capable of including uncertainties or even risk-averse behavior arising from forecasting errors of variable renewable energies. However, risks associated with uncertain forecasting errors have become increasingly relevant within the process of decarbonization. The intraday market serves to compensate for these forecasting errors. Thus, the uncertainty of forecasting errors results in uncertain intraday prices and quantities. Therefore, this paper proposes a two-stage risk-constrained stochastic optimization approach to fundamentally model unit commitment decisions facing an uncertain intraday market. By the nesting of Lagrangian relaxation and an extended Benders decomposition, this model can be applied to large-scale, e.g., pan-European, power systems. The approach is applied to scenarios for 2023—considering a full nuclear phase-out in Germany—and 2035—considering a full coal phase-out in Germany. First, the influence of the risk factors is evaluated. Furthermore, an evaluation of the market prices shows an increase in price levels as well as an increasing day-ahead-intraday spread in 2023 and in 2035. Finally, it is shown that intraday cross-border trading has a significant influence on trading volumes and prices and ensures a more efficient allocation of resources.}, language = {en} } @article{HoffstadtPohenDickeetal.2020, author = {Hoffstadt, Kevin and Pohen, Gino D. and Dicke, Max D. and Paulsen, Svea and Krafft, Simone and Zang, Joachim W. and Fonseca-Zang, Warde A. da and Leite, Athaydes and Kuperjans, Isabel}, title = {Challenges and prospects of biogas from energy cane as supplement to bioethanol production}, series = {Agronomy}, volume = {10}, journal = {Agronomy}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {2073-4395}, doi = {10.3390/agronomy10060821}, year = {2020}, abstract = {Innovative breeds of sugar cane yield up to 2.5 times as much organic matter as conventional breeds, resulting in a great potential for biogas production. The use of biogas production as a complementary solution to conventional and second-generation ethanol production in Brazil may increase the energy produced per hectare in the sugarcane sector. Herein, it was demonstrated that through ensiling, energy cane can be conserved for six months; the stored cane can then be fed into a continuous biogas process. This approach is necessary to achieve year-round biogas production at an industrial scale. Batch tests revealed specific biogas potentials between 400 and 600 LN/kgVS for both the ensiled and non-ensiled energy cane, and the specific biogas potential of a continuous biogas process fed with ensiled energy cane was in the same range. Peak biogas losses through ensiling of up to 27\% after six months were observed. Finally, compared with second-generation ethanol production using energy cane, the results indicated that biogas production from energy cane may lead to higher energy yields per hectare, with an average energy yield of up to 162 MWh/ha. Finally, the Farm²CBG concept is introduced, showing an approach for decentralized biogas production.}, language = {en} } @inproceedings{HandschuhStollenwerkBorchert2021, author = {Handschuh, Nils and Stollenwerk, Dominik and Borchert, J{\"o}rg}, title = {Operation of thermal storage power plants under high renewable grid penetration}, series = {NEIS 2021: Conference on Sustainable Energy Supply and Energy Storage Systems}, booktitle = {NEIS 2021: Conference on Sustainable Energy Supply and Energy Storage Systems}, publisher = {VDE Verlag}, address = {Berlin}, isbn = {978-3-8007-5651-3}, pages = {261 -- 265}, year = {2021}, abstract = {The planned coal phase-out in Germany by 2038 will lead to the dismantling of power plants with a total capacity of approx. 30 GW. A possible further use of these assets is the conversion of the power plants to thermal storage power plants; the use of these power plants on the day-ahead market is considerably limited by their technical parameters. In this paper, the influence of the technical boundary conditions on the operating times of these storage facilities is presented. For this purpose, the storage power plants were described as an MILP problem and two price curves, one from 2015 with a relatively low renewable penetration (33 \%) and one from 2020 with a high renewable energy penetration (51 \%) are compared. The operating times were examined as a function of the technical parameters and the critical influencing factors were investigated. The thermal storage power plant operation duration and the energy shifted with the price curve of 2020 increases by more than 25 \% compared to 2015.}, language = {en} } @article{RuppHandschuhRiekeetal.2019, author = {Rupp, Matthias and Handschuh, Nils and Rieke, Christian and Kuperjans, Isabel}, title = {Contribution of country-specific electricity mix and charging time to environmental impact of battery electric vehicles: A case study of electric buses in Germany}, series = {Applied Energy}, volume = {237}, journal = {Applied Energy}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0306-2619}, doi = {10.1016/j.apenergy.2019.01.059}, pages = {618 -- 634}, year = {2019}, language = {en} } @incollection{StollenwerkFranzkeMaureretal.2023, author = {Stollenwerk, Dominik and Franzke, Till and Maurer, Florian and Reinkensmeier, Sebastian and Kim, Franken and Tambornino, Philipp and Haas, Florian and Rieke, Christian and Hermanuz, Andreas and Borchert, J{\"o}rg and Ritz, Thomas and Sander, Volker}, title = {Smarte Lades{\"a}ulen : Netz- und Marktdienliches {\"o}ffentliches Laden}, series = {Towards the New Normal in Mobility : Technische und betriebswirtschaftliche Aspekte}, booktitle = {Towards the New Normal in Mobility : Technische und betriebswirtschaftliche Aspekte}, editor = {Proff, Heike}, publisher = {Springer Gabler}, address = {Wiesbaden}, isbn = {978-3-658-39437-0 (Print)}, doi = {10.1007/978-3-658-39438-7_18}, pages = {287 -- 304}, year = {2023}, abstract = {Stand 01.01.2022 sind in Deutschland 618.460 elektrisch angetriebene KFZ zugelassen. Insgesamt sind derzeit 48.540.878 KFZ zugelassen, was einer Elektromobilit{\"a}tsquote von ca. 1,2 \% entspricht. Derzeit werden Elektromobile {\"u}ber Ladestationen oder Steckdosen mit dem Stromnetz verbunden und {\"u}blicherweise mit der vollen Ladekapazit{\"a}t des Anschlusses aufgeladen, bis das Batteriemanagementsystem des Fahrzeugs abh{\"a}ngig vom Ladezustand der Batterie die Ladeleistung reduziert.}, language = {de} } @inproceedings{NierlePieper2023, author = {Nierle, Elisabeth and Pieper, Martin}, title = {Measuring social impacts in engineering education to improve sustainability skills}, series = {European Society for Engineering Education (SEFI)}, booktitle = {European Society for Engineering Education (SEFI)}, doi = {10.21427/QPR4-0T22}, pages = {9 Seiten}, year = {2023}, abstract = {In times of social climate protection movements, such as Fridays for Future, the priorities of society, industry and higher education are currently changing. The consideration of sustainability challenges is increasing. In the context of sustainable development, social skills are crucial to achieving the United Nations Sustainable Development Goals (SDGs). In particular, the impact that educational activities have on people, communities and society is therefore coming to the fore. Research has shown that people with high levels of social competence are better able to manage stressful situations, maintain positive relationships and communicate effectively. They are also associated with better academic performance and career success. However, especially in engineering programs, the social pillar is underrepresented compared to the environmental and economic pillars. In response to these changes, higher education institutions should be more aware of their social impact - from individual forms of teaching to entire modules and degree programs. To specifically determine the potential for improvement and derive resulting change for further development, we present an initial framework for social impact measurement by transferring already established approaches from the business sector to the education sector. To demonstrate the applicability, we measure the key competencies taught in undergraduate engineering programs in Germany. The aim is to prepare the students for success in the modern world of work and their future contribution to sustainable development. Additionally, the university can include the results in its sustainability report. Our method can be applied to different teaching methods and enables their comparison.}, language = {en} } @article{BlockViebahnJungbluth2024, author = {Block, Simon and Viebahn, Peter and Jungbluth, Christian}, title = {Analysing direct air capture for enabling negative emissions in Germany: an assessment of the resource requirements and costs of a potential rollout in 2045}, series = {Frontiers in Climate}, volume = {6}, journal = {Frontiers in Climate}, publisher = {Frontiers}, address = {Lausanne}, issn = {2624-9553}, doi = {10.3389/fclim.2024.1353939}, pages = {18 Seiten}, year = {2024}, abstract = {Direct air capture (DAC) combined with subsequent storage (DACCS) is discussed as one promising carbon dioxide removal option. The aim of this paper is to analyse and comparatively classify the resource consumption (land use, renewable energy and water) and costs of possible DAC implementation pathways for Germany. The paths are based on a selected, existing climate neutrality scenario that requires the removal of 20 Mt of carbon dioxide (CO2) per year by DACCS from 2045. The analysis focuses on the so-called "low-temperature" DAC process, which might be more advantageous for Germany than the "high-temperature" one. In four case studies, we examine potential sites in northern, central and southern Germany, thereby using the most suitable renewable energies for electricity and heat generation. We show that the deployment of DAC results in large-scale land use and high energy needs. The land use in the range of 167-353 km2 results mainly from the area required for renewable energy generation. The total electrical energy demand of 14.4 TWh per year, of which 46\% is needed to operate heat pumps to supply the heat demand of the DAC process, corresponds to around 1.4\% of Germany's envisaged electricity demand in 2045. 20 Mt of water are provided yearly, corresponding to 40\% of the city of Cologne's water demand (1.1 million inhabitants). The capture of CO2 (DAC) incurs levelised costs of 125-138 EUR per tonne of CO2, whereby the provision of the required energy via photovoltaics in southern Germany represents the lowest value of the four case studies. This does not include the costs associated with balancing its volatility. Taking into account transporting the CO2 via pipeline to the port of Wilhelmshaven, followed by transporting and sequestering the CO2 in geological storage sites in the Norwegian North Sea (DACCS), the levelised costs increase to 161-176 EUR/tCO2. Due to the longer transport distances from southern and central Germany, a northern German site using wind turbines would be the most favourable.}, language = {en} }