@inproceedings{SchmittRosinButenweg2018, author = {Schmitt, Timo and Rosin, Julia and Butenweg, Christoph}, title = {Seismic Impact And Design Of Buried Pipelines}, series = {16th European Conference on Earthquake Engineering, Thessaloniki, 18-21 June, 2018}, booktitle = {16th European Conference on Earthquake Engineering, Thessaloniki, 18-21 June, 2018}, pages = {1 -- 12}, year = {2018}, abstract = {Seismic design of buried pipeline systems for energy and water supply is not only important for plant and operational safety but also for the maintenance of the supply infrastructure after an earthquake. The present paper shows special issues of the seismic wave impacts on buried pipelines, describes calculation methods, proposes approaches and gives calculation examples. This paper regards the effects of transient displacement differences and resulting tensions within the pipeline due to the wave propagation of the earthquake. However, the presented model can also be used to calculate fault rupture induced displacements. Based on a three-dimensional Finite Element Model parameter studies are performed to show the influence of several parameters such as incoming wave angle, wave velocity, backfill height and synthetic displacement time histories. The interaction between the pipeline and the surrounding soil is modeled with non-linear soil springs and the propagating wave is simulated affecting the pipeline punctually, independently in time and space. Special attention is given to long-distance heat pipeline systems. Here, in regular distances expansion bends are arranged to ensure movements of the pipeline due to high temperature. Such expansion bends are usually designed with small bending radii, which during the earthquake lead to high bending stresses in the cross-section of the pipeline. Finally, an interpretation of the results and recommendations are given for the most critical parameters.}, language = {en} } @inproceedings{RajanButenwegDalgueretal.2017, author = {Rajan, S. and Butenweg, Christoph and Dalguer, L. A. and An, J. H. and Renault, P. and Klinkel, S.}, title = {Fragility curves for a three-storey reinforced concrete test structure of the international benchmark SMART 2013}, series = {16th World Conference on Earthquake, 16WCEE 2017 Santiago Chile, January 9th to 13th 2017}, booktitle = {16th World Conference on Earthquake, 16WCEE 2017 Santiago Chile, January 9th to 13th 2017}, publisher = {Chilean Association on Seismology and Earthquake Engineering (ACHISINA)}, year = {2017}, language = {en} } @book{KlinkelButenwegLinetal.2014, author = {Klinkel, Sven and Butenweg, Christoph and Lin, Gao and Holtschoppen, Britta}, title = {Seismic design of industrial facilities : Proceedings of the International Conference on Seismic Design of Industrial Facilities (SeDIF) / Sven Klinkel, Christoph Butenweg, Gao Lin, Britta Holtschoppen Editors}, publisher = {Springer Vieweg}, address = {Wiesbaden}, organization = {International Conference on Seismic Design of Industrial Facilities }, isbn = {978-3-658-02809-1 (Print) ; 978-365-80281-0-7 (E-Book)}, doi = {10.1007/978-3-658-02810-7}, pages = {XIII, 450 S.}, year = {2014}, language = {en} } @inproceedings{ButenwegMarinkovicFehlingetal.2018, author = {Butenweg, Christoph and Marinkovic, Marko and Fehling, Ekkehard and Pfetzing, Thomas and Kubalski, Thomas}, title = {Experimental and Numerical Investigations of Reinforced Concrete Frames with Masonry Infills under Combined In- and Out-of-plane Seismic Loading}, series = {16th European Conference on Earthquake Engineering, Thessaloniki, 18-21 June, 2018}, booktitle = {16th European Conference on Earthquake Engineering, Thessaloniki, 18-21 June, 2018}, pages = {1 -- 12}, year = {2018}, language = {en} } @inproceedings{ButenwegHoltschoppen2014, author = {Butenweg, Christoph and Holtschoppen, Britta}, title = {Seismic design of industrial facilities in Germany}, series = {Seismic Design of Industrial Facilities : proceedings of the International Conference on Seismic Design of Industrial Facilities (SeDIF-Conference) : Aachen, 26. - 27.9.2013}, booktitle = {Seismic Design of Industrial Facilities : proceedings of the International Conference on Seismic Design of Industrial Facilities (SeDIF-Conference) : Aachen, 26. - 27.9.2013}, publisher = {Springer Vieweg}, address = {Wiesbaden}, isbn = {978-3-658-02809-1 ; 3-658-02809-2 (Print) ; 978-3-658-02810-7 (E-Book)}, doi = {10.1007/978-3-658-02810-7_6}, pages = {63 -- 74}, year = {2014}, language = {de} } @techreport{ButenwegKaiser2014, author = {Butenweg, Christoph and Kaiser, Diethelm}, title = {Seismic hazard harmonisation in Europe (SHARE) : DGEB-Workshop in Frankfurt a.M., Germany, 27. May 2014 / Christoph Butenweg, Diethelm Kaiser (editors)}, publisher = {DGEB}, address = {Aachen}, organization = {Deutsche Gesellschaft f{\"u}r Erdbeben-Ingenieurwesen und Baudynamik}, isbn = {3-930108-12-7}, pages = {V, 117 S.}, year = {2014}, language = {en} } @inproceedings{MilkovaRosinButenwegetal.2018, author = {Milkova, Kristina and Rosin, Julia and Butenweg, Christoph and Dumova-Jovanoska, Elena}, title = {Development of Seismic Vulnerability Curves for Region Specific Masonry Buildings}, series = {16th European Conference on Earthquake Engineering, Thessaloniki, 18-21 June, 2018}, booktitle = {16th European Conference on Earthquake Engineering, Thessaloniki, 18-21 June, 2018}, pages = {1 -- 10}, year = {2018}, language = {en} } @inproceedings{MichelButenwegKlinkel2018, author = {Michel, Philipp and Butenweg, Christoph and Klinkel, Sven}, title = {Frequency Dependent Impedance Analysis of the Foundation-Soil-Systems of Onshore Wind Turbines}, series = {16th European Conference on Earthquake Engineering, Thessaloniki, 18-21 June, 2018}, booktitle = {16th European Conference on Earthquake Engineering, Thessaloniki, 18-21 June, 2018}, pages = {1 -- 13}, year = {2018}, language = {en} } @inproceedings{RosinMykoniouButenweg2017, author = {Rosin, J. and Mykoniou, K. and Butenweg, Christoph}, title = {Analysis Of Base Isolated Liquid Storage Tanks With 3D Fsi-Analysis As Well As Simplified Approaches}, series = {16th World Conference on Earthquake Engineering, 16WCEE 2017 Santiago Chile, January 9th to 13th 2017}, booktitle = {16th World Conference on Earthquake Engineering, 16WCEE 2017 Santiago Chile, January 9th to 13th 2017}, publisher = {Chilean Association on Seismology and Earthquake Engineering (ACHISINA)}, pages = {1 -- 14}, year = {2017}, abstract = {Tanks are preferably designed, for cost-saving reasons, as circular, cylindrical, thin-walled shells. In case of seismic excitation, these constructions are highly vulnerable to stability failures. An earthquake-resistant design of rigidly supported tanks for high seismic loading demands, however, uneconomic wall thicknesses. A cost-effective alternative can be provided by base isolation systems. In this paper, a simplified seismic design procedure for base isolated tanks is introduced, by appropriately modifying the standard mechanical model for flexible, rigidly supported tanks. The non-linear behavior of conventional base isolation systems becomes an integral part of a proposed simplified process, which enables the assessment of the reduced hydrodynamic forces acting on the tank walls and the corresponding stress distribution. The impulsive and convective actions of the liquid are taken into account. The validity of this approach is evaluated by employing a non-linear fluid-structure interaction algorithm of finite element method. Special focus is placed on the boundary conditions imposed from the base isolation and the resulting hydrodynamic pressures. Both horizontal and vertical component of ground motion are considered in order to study the principal effects of the base isolation on the pressure distribution of the tank walls. The induced rocking effects associated with elastomeric bearings are discussed. The results manifest that base isolated tanks can be designed for seismic loads by means of the proposed procedure with sufficient accuracy, allowing to dispense with numerically expensive techniques.}, language = {en} } @inproceedings{ButenwegMarinkovic2018, author = {Butenweg, Christoph and Marinkovic, Marko}, title = {Damage reduction system for masonry infill walls under seismic loading}, series = {ce/papers}, volume = {2}, booktitle = {ce/papers}, number = {4}, publisher = {Ernst \& Sohn Verlag}, address = {Berlin}, doi = {10.1002/cepa.863}, pages = {267 -- 273}, year = {2018}, abstract = {Reinforced concrete (RC) frames with masonry infills are frequently used in seismic regions all over the world. Generally masonry infills are considered as nonstructural elements and thus are typically neglected in the design process. However, the observations made after strong earthquakes have shown that masonry infills can modify the dynamic behavior of the structure significantly. The consequences were total collapses of buildings and loss of human lives. This paper presents the new system INODIS (Innovative Decoupled Infill System) developed within the European research project INSYSME (Innovative Systems for Earthquake Resistant Masonry Enclosures in RC Buildings). INODIS decouples the frame and the masonry infill by means of special U-shaped rubbers placed in between frame and infill. The effectiveness of the system was investigated by means of full scale tests on RC frames with masonry infills subjected to in-plane and out-of-plane loading. Furthermore small specimen tests were conducted to determine material characteristics of the components and the resistances of the connections. Finally, a micromodel was developed to simulate the in-plane behavior of RC frames infilled with AAC blocks with and without installation of the INODIS system.}, language = {en} }