@incollection{LeiseAltherrPelz2018, author = {Leise, Philipp and Altherr, Lena and Pelz, Peter F.}, title = {Energy-Efficient design of a water supply system for skyscrapers by mixed-integer nonlinear programming}, series = {Operations Research Proceedings 2017}, booktitle = {Operations Research Proceedings 2017}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-89919-0}, doi = {10.1007/978-3-319-89920-6_63}, year = {2018}, abstract = {The energy-efficiency of technical systems can be improved by a systematic design approach. Technical Operations Research (TOR) employs methods known from Operations Research to find a global optimal layout and operation strategy of technical systems. We show the practical usage of this approach by the systematic design of a decentralized water supply system for skyscrapers. All possible network options and operation strategies are modeled by a Mixed-Integer Nonlinear Program. We present the optimal system found by our approach and highlight the energy savings compared to a conventional system design.}, language = {en} } @article{WiegnerVolkerMainzetal.2023, author = {Wiegner, Jonas and Volker, Hanno and Mainz, Fabian and Backes, Andreas and Loeken, Michael and H{\"u}ning, Felix}, title = {Energy analysis of a wireless sensor node powered by a Wiegand sensor}, series = {Journal of Sensors and Sensor Systems (JSSS)}, volume = {12}, journal = {Journal of Sensors and Sensor Systems (JSSS)}, number = {1}, publisher = {Copernicus Publ.}, address = {G{\"o}ttingen}, issn = {2194-878X}, doi = {10.5194/jsss-12-85-2023}, pages = {85 -- 92}, year = {2023}, abstract = {This article describes an Internet of things (IoT) sensing device with a wireless interface which is powered by the energy-harvesting method of the Wiegand effect. The Wiegand effect, in contrast to continuous sources like photovoltaic or thermal harvesters, provides small amounts of energy discontinuously in pulsed mode. To enable an energy-self-sufficient operation of the sensing device with this pulsed energy source, the output energy of the Wiegand generator is maximized. This energy is used to power up the system and to acquire and process data like position, temperature or other resistively measurable quantities as well as transmit these data via an ultra-low-power ultra-wideband (UWB) data transmitter. A proof-of-concept system was built to prove the feasibility of the approach. The energy consumption of the system during start-up was analysed, traced back in detail to the individual components, compared to the generated energy and processed to identify further optimization options. Based on the proof of concept, an application prototype was developed.}, language = {en} } @book{WosnitzaHilgers2012, author = {Wosnitza, Franz and Hilgers, Hans Gerd}, title = {Energieeffizienz und Energiemanagement : ein {\"U}berblick heutiger M{\"o}glichkeiten und Notwendigkeiten}, publisher = {Springer Spektrum}, address = {Wiesbaden}, isbn = {978-3-8348-1941-3}, pages = {XVII, 548 S. : Ill., graph. Darst.}, year = {2012}, language = {en} } @incollection{SchmitzDietzeCzarnecki2019, author = {Schmitz, Manfred and Dietze, Christian and Czarnecki, Christian}, title = {Enabling digital transformation through robotic process automation at Deutsche Telekom}, series = {Enabling digital transformation through robotic process automation at Deutsche Telekom}, booktitle = {Enabling digital transformation through robotic process automation at Deutsche Telekom}, editor = {Urbach, Nils and R{\"o}glinger, Maximilian}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-95272-7}, doi = {10.1007/978-3-319-95273-4_2}, pages = {15 -- 33}, year = {2019}, abstract = {Due to the high number of customer contacts, fault clearances, installations, and product provisioning per year, the automation level of operational processes has a significant impact on financial results, quality, and customer experience. Therefore, the telecommunications operator Deutsche Telekom (DT) has defined a digital strategy with the objectives of zero complexity and zero complaint, one touch, agility in service, and disruptive thinking. In this context, Robotic Process Automation (RPA) was identified as an enabling technology to formulate and realize DT's digital strategy through automation of rule-based, routine, and predictable tasks in combination with structured and stable data.}, language = {en} } @incollection{CzarneckiHongSchmitzetal.2021, author = {Czarnecki, Christian and Hong, Chin-Gi and Schmitz, Manfred and Dietze, Christian}, title = {Enabling digital transformation through cognitive robotic process automation at Deutsche Telekom Services Europe}, series = {Digitalization Cases Vol. 2 : Mastering digital transformation for global business}, booktitle = {Digitalization Cases Vol. 2 : Mastering digital transformation for global business}, editor = {Urbach, Nils and R{\"o}glinger, Maximilian and Kautz, Karlheinz and Alias, Rose Alinda and Saunders, Carol and Wiener, Martin}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-80002-4 (Print)}, doi = {10.1007/978-3-030-80003-1}, pages = {123 -- 138}, year = {2021}, abstract = {Subject of this case is Deutsche Telekom Services Europe (DTSE), a service center for administrative processes. Due to the high volume of repetitive tasks (e.g., 100k manual uploads of offer documents into SAP per year), automation was identified as an important strategic target with a high management attention and commitment. DTSE has to work with various backend application systems without any possibility to change those systems. Furthermore, the complexity of administrative processes differed. When it comes to the transfer of unstructured data (e.g., offer documents) to structured data (e.g., MS Excel files), further cognitive technologies were needed.}, language = {en} } @article{WolfFoltzSchlicketal.2000, author = {Wolf, Martin and Foltz, Christian and Schlick, Christopher and Luczak, Holger}, title = {Empirical Investigation of a workspace model for Chemical engineers / Wolf, Martin ; Foltz, Christian ; Schlick, Christopher ; Luczak, Holger}, series = {Proceedings of the Human Factors and Ergonomics Society Annual Meeting July 2000. 44 (2000), H. 6}, journal = {Proceedings of the Human Factors and Ergonomics Society Annual Meeting July 2000. 44 (2000), H. 6}, publisher = {-}, pages = {612 -- 615}, year = {2000}, language = {en} } @article{FerreinSchifferLakemeyer2009, author = {Ferrein, Alexander and Schiffer, Stefan and Lakemeyer, Gerhard}, title = {Embedding fuzzy controllers in golog / Ferrein, Alexander ; Schiffer, Stefan ; Lakemeyer, Gerhard}, series = {IEEE International Conference on Fuzzy Systems, 2009. FUZZ-IEEE 2009}, journal = {IEEE International Conference on Fuzzy Systems, 2009. FUZZ-IEEE 2009}, publisher = {IEEE}, address = {New York}, isbn = {978-1-4244-3596-8}, pages = {894 -- 899}, year = {2009}, language = {en} } @book{Huening2018, author = {H{\"u}ning, Felix}, title = {Embedded Design For IoT With Renesas Synergy}, publisher = {Renesas Electronics}, address = {D{\"u}sseldorf}, pages = {143 S.}, year = {2018}, language = {en} } @article{JensKaldenhoffKirschnerHermannsetal.2014, author = {Jens, Otto and Kaldenhoff, E. and Kirschner-Hermanns, R. and M{\"u}hl, Thomas and Klinge, Uwe}, title = {Elongation of textile pelvic floor implants under load is related to complete loss of effective porosity, thereby favoring incorporation in scar plates}, series = {Journal of biomedical materials research. Part A}, volume = {102}, journal = {Journal of biomedical materials research. Part A}, number = {4}, publisher = {Wiley}, address = {New York}, issn = {1552-4965}, doi = {10.1002/jbm.a.34767}, pages = {1079 -- 1084}, year = {2014}, abstract = {Use of textile structures for reinforcement of pelvic floor structures has to consider mechanical forces to the implant, which are quite different to the tension free conditions of the abdominal wall. Thus, biomechanical analysis of textile devices has to include the impact of strain on stretchability and effective porosity. Prolift® and Prolift + M®, developed for tension free conditions, were tested by measuring stretchability and effective porosity applying mechanical strain. For comparison, we used Dynamesh-PR4®, which was designed for pelvic floor repair to withstand mechanical strain. Prolift® at rest showed moderate porosity with little stretchability but complete loss of effective porosity at strain of 4.9 N/cm. Prolift + M® revealed an increased porosity at rest, but at strain showed high stretchability, with subsequent loss of effective porosity at strain of 2.5 N/cm. Dynamesh PR4® preserved its high porosity even under strain, but as consequence of limited stretchability. Though in tension free conditions Prolift® and Prolift + M® can be considered as large pore class I meshes, application of mechanical strain rapidly lead to collapse of pores. The loss of porosity at mechanical stress can be prevented by constructions with high structural stability. Assessment of porosity under strain was found helpful to define requirements for pelvic floor devices. Clinical studies have to prove whether devices with high porosity as well as high structural stability can improve the patients' outcome.}, language = {en} } @article{SchubaWrona1999, author = {Schuba, Marko and Wrona, Konrad}, title = {Electronic Commerce Transactions in a Wireless Environment / Schuba, Marko. ; Wrona, Konrad}, pages = {1 -- 9}, year = {1999}, language = {en} }