@article{SiepmannRupietta1993, author = {Siepmann, Thomas and Rupietta, D.}, title = {Closer to the customer with computerized product support}, series = {Technische Mitteilungen Krupp (1993)}, journal = {Technische Mitteilungen Krupp (1993)}, address = {Essen}, year = {1993}, language = {en} } @article{PrumeTyholdtCalameetal.2007, author = {Prume, Klaus and Tyholdt, F. and Calame, F. and Raeder, H.}, title = {Chemically derived seeding layer for {100}-textured PZT thin films / Tyholdt, F. ; Calame, F. ; Prume, K. ; Raeder, H. ; Muralt, P.}, series = {Journal of Electroceramics. 19 (2007), H. 4}, journal = {Journal of Electroceramics. 19 (2007), H. 4}, isbn = {1385-3449}, pages = {311 -- 314}, year = {2007}, language = {en} } @inproceedings{BuxbaumSchwarteXuetal.1999, author = {Buxbaum, Bernd and Schwarte, Rudolf and Xu, Zhanping and Ringbeck, Thorsten and [u.a.],}, title = {Charge Transfer Simulation in PMD-Structures}, series = {Sensor 99 : proceedings / 9th Int'l Fair and Conference for Sensors, Transducers \& Systems, May 18 - 20, 1999, Exhibition Centre N{\"u}rnberg/Germany. - Vol. 2}, booktitle = {Sensor 99 : proceedings / 9th Int'l Fair and Conference for Sensors, Transducers \& Systems, May 18 - 20, 1999, Exhibition Centre N{\"u}rnberg/Germany. - Vol. 2}, publisher = {AMA Service GmbH}, address = {Wunsdorf}, pages = {427 -- 432}, year = {1999}, language = {en} } @article{HoltrupSadeghfamHeuermannetal.2014, author = {Holtrup, S. and Sadeghfam, Arash and Heuermann, Holger and Awakowicz, P.}, title = {Characterization and optimization technique for microwave-driven high-intensity discharge lamps using hot S-parameters}, series = {IEEE transactions on microwave theories and techniques}, volume = {62}, journal = {IEEE transactions on microwave theories and techniques}, number = {10}, publisher = {IEEE}, address = {New York}, issn = {0018-9480}, doi = {10.1109/TMTT.2014.2342652}, pages = {2471 -- 2480}, year = {2014}, abstract = {High-intensity discharge lamps can be driven by radio-frequency signals in the ISM frequency band at 2.45 GHz, using a matching network to transform the impedance of the plasma to the source impedance. To achieve an optimal operating condition, a good characterization of the lamp in terms of radio frequency equivalent circuits under operating conditions is necessary, enabling the design of an efficient matching network. This paper presents the characterization technique for such lamps and presents the design of the required matching network. For the characterization, a high-intensity discharge lamp was driven by a monofrequent large signal at 2.45 GHz, whereas a frequency sweep over 300 MHz was performed across this signal to measure so-called small-signal hot S-parameters using a vector network analyzer. These parameters are then used as an equivalent load in a circuit simulator to design an appropriate matching network. Using the measured data as a black-box model in the simulation results in a quick and efficient method to simulate and design efficient matching networks in spite of the complex plasma behavior. Furthermore, photometric analysis of high-intensity discharge lamps are carried out, comparing microwave operation to conventional operation.}, language = {en} } @article{SchollAachDesernoetal.2011, author = {Scholl, Ingrid and Aach, Til and Deserno, Thomas M. and Kuhlen, Torsten}, title = {Challenges of medical image processing}, series = {Computer Science - Research and Development}, volume = {26}, journal = {Computer Science - Research and Development}, number = {1-2}, publisher = {Springer}, address = {Berlin}, isbn = {1865-2042}, pages = {5 -- 13}, year = {2011}, language = {en} } @article{SerrorHackHenzeetal.2021, author = {Serror, Martin and Hack, Sacha and Henze, Martin and Schuba, Marko and Wehrle, Klaus}, title = {Challenges and Opportunities in Securing the Industrial Internet of Things}, series = {IEEE Transactions on Industrial Informatics}, volume = {17}, journal = {IEEE Transactions on Industrial Informatics}, number = {5}, publisher = {IEEE}, address = {New York}, issn = {1941-0050}, doi = {10.1109/TII.2020.3023507}, pages = {2985 -- 2996}, year = {2021}, language = {en} } @article{HaagZontarSchleupenetal.2014, author = {Haag, S. and Zontar, D. and Schleupen, Josef and M{\"u}ller, T. and Brecher, C.}, title = {Chain of refined perception in self-optimizing assembly of micro-optical systems}, series = {Journal of sensors and sensor systems}, volume = {3}, journal = {Journal of sensors and sensor systems}, number = {1}, publisher = {Copernicus Publ.}, address = {G{\"o}ttingen}, issn = {2194-878X}, doi = {10.5194/jsss-3-87-2014}, pages = {87 -- 95}, year = {2014}, abstract = {Today, the assembly of laser systems requires a large share of manual operations due to its complexity regarding the optimal alignment of optics. Although the feasibility of automated alignment of laser optics has been shown in research labs, the development effort for the automation of assembly does not meet economic requirements - especially for low-volume laser production. This paper presents a model-based and sensor-integrated assembly execution approach for flexible assembly cells consisting of a macro-positioner covering a large workspace and a compact micromanipulator with camera attached to the positioner. In order to make full use of available models from computer-aided design (CAD) and optical simulation, sensor systems at different levels of accuracy are used for matching perceived information with model data. This approach is named "chain of refined perception", and it allows for automated planning of complex assembly tasks along all major phases of assembly such as collision-free path planning, part feeding, and active and passive alignment. The focus of the paper is put on the in-process image-based metrology and information extraction used for identifying and calibrating local coordinate systems as well as the exploitation of that information for a part feeding process for micro-optics. Results will be presented regarding the processes of automated calibration of the robot camera as well as the local coordinate systems of part feeding area and robot base.}, language = {en} } @article{HagemannHenningsWernicke1984, author = {Hagemann, Hans-J{\"u}rgen and Hennings, D. and Wernicke, R.}, title = {Ceramic multilayer capacitors. Hagemann, H. J.; Hennings, D.; Wernicke, R.}, series = {Philips' technical review / Philips' Gloeilampenfabrieken. Philips' Gloeilampenfabrieken . 41 (1984)}, journal = {Philips' technical review / Philips' Gloeilampenfabrieken. Philips' Gloeilampenfabrieken . 41 (1984)}, isbn = {0031-7926}, pages = {89 -- 98}, year = {1984}, language = {en} } @inproceedings{SchifferBragard2019, author = {Schiffer, Fabian and Bragard, Michael}, title = {Cascaded LQ and Field-Oriented Control of a Mobile Inverse Pendulum (Segway) with Permanent Magnet Synchronous Machines}, series = {2019 20th International Conference on Research and Education in Mechatronics (REM)}, booktitle = {2019 20th International Conference on Research and Education in Mechatronics (REM)}, isbn = {978-1-5386-9257-8}, doi = {10.1109/REM.2019.8744101}, pages = {1 -- 8}, year = {2019}, language = {en} } @misc{NoetzoldBragardFinketal.2014, author = {N{\"o}tzold, K. and Bragard, Michael and Fink, K. and Griessel, R. and Wegener, R.}, title = {Cascaded H-bridge converter with transformer based cell power balancing in each voltage level : [Patentschrift]}, publisher = {Europ{\"a}isches Patentamt / United States Patent and Trademark Office [u.a.]}, address = {Den Haag / Alexandria, VA}, pages = {16 S. : graph. Darst.}, year = {2014}, language = {en} }