@inproceedings{LeingartnerMaurerSteinbaueretal.2013, author = {Leingartner, Max and Maurer, Johannes and Steinbauer, Gerald and Ferrein, Alexander}, title = {Evaluation of sensors and mapping approaches for disasters in tunnels}, series = {IEEE International Symposium on Safety, Security, and Rescue Robotics : SSRR : 21-26 Oct. 2013, Linkoping, Sweden}, booktitle = {IEEE International Symposium on Safety, Security, and Rescue Robotics : SSRR : 21-26 Oct. 2013, Linkoping, Sweden}, organization = {Institute of Electrical and Electronics Engineers}, isbn = {978-1-4799-0879-0}, pages = {1 -- 7}, year = {2013}, language = {en} } @article{LeingartnerMaurerFerreinetal.2016, author = {Leingartner, Max and Maurer, Johannes and Ferrein, Alexander and Steinbauer, Gerald}, title = {Evaluation of Sensors and Mapping Approaches for Disasters in Tunnels}, series = {Journal of Field Robotics}, volume = {33}, journal = {Journal of Field Robotics}, number = {8}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1556-4967}, doi = {10.1002/rob.21611}, pages = {1037 -- 1057}, year = {2016}, abstract = {Ground or aerial robots equipped with advanced sensing technologies, such as three-dimensional laser scanners and advanced mapping algorithms, are deemed useful as a supporting technology for first responders. A great deal of excellent research in the field exists, but practical applications at real disaster sites are scarce. Many projects concentrate on equipping robots with advanced capabilities, such as autonomous exploration or object manipulation. In spite of this, realistic application areas for such robots are limited to teleoperated reconnaissance or search. In this paper, we investigate how well state-of-the-art and off-the-shelf components and algorithms are suited for reconnaissance in current disaster-relief scenarios. The basic idea is to make use of some of the most common sensors and deploy some widely used algorithms in a disaster situation, and to evaluate how well the components work for these scenarios. We acquired the sensor data from two field experiments, one from a disaster-relief operation in a motorway tunnel, and one from a mapping experiment in a partly closed down motorway tunnel. Based on these data, which we make publicly available, we evaluate state-of-the-art and off-the-shelf mapping approaches. In our analysis, we integrate opinions and replies from first responders as well as from some algorithm developers on the usefulness of the data and the limitations of the deployed approaches, respectively. We discuss the lessons we learned during the two missions. These lessons are interesting for the community working in similar areas of urban search and rescue, particularly reconnaissance and search.}, language = {en} } @inproceedings{StopforthFerreinSteinbauer2015, author = {Stopforth, Riaan and Ferrein, Alexander and Steinbauer, Gerald}, title = {Europe and South African collaboration on the Mechatronics and Robotics systems as part of the SA Robotics Center}, series = {ICRA 2015 Developing Countries Forum}, booktitle = {ICRA 2015 Developing Countries Forum}, pages = {3 S.}, year = {2015}, abstract = {Mechatronics consist of the integration of mechanical engineering, electronic integration and computer science/ engineering. These broad fields are essential for robotic systems, yet it makes it difficult for the researchers to specialize and be experts in all these fields. Collaboration between researchers allow for the integration of experience and specialization, to allow optimized systems. Collaboration between the European countries and South Africa is critical, as each country has different resources available, which the other countries might not have. Applications with the need for approval of any restrictions, can also be obtained easier in some countries compared to others, thus preventing the delays of research. Some problems that have been experienced are discussed, with the Robotics Center of South Africa as a possible solution.}, language = {en} } @article{FerreinSteinbauerMcPhillipsetal.2007, author = {Ferrein, Alexander and Steinbauer, Gerald and McPhillips, Graeme and Potgieter, Anet}, title = {Establishing the RoboCup Standard League in Africa - applying for the RoboCup Standard League with a German-Austrian-South African Research Project}, pages = {1 -- 5}, year = {2007}, language = {en} } @article{SchifferFerrein2018, author = {Schiffer, Stefan and Ferrein, Alexander}, title = {ERIKA—Early Robotics Introduction at Kindergarten Age}, series = {Multimodal Technologies Interact}, volume = {2}, journal = {Multimodal Technologies Interact}, number = {4}, publisher = {MDPI}, address = {Basel}, issn = {2414-4088}, doi = {10.3390/mti2040064}, pages = {15}, year = {2018}, abstract = {In this work, we report on our attempt to design and implement an early introduction to basic robotics principles for children at kindergarten age. One of the main challenges of this effort is to explain complex robotics contents in a way that pre-school children could follow the basic principles and ideas using examples from their world of experience. What sets apart our effort from other work is that part of the lecturing is actually done by a robot itself and that a quiz at the end of the lesson is done using robots as well. The humanoid robot Pepper from Softbank, which is a great platform for human-robot interaction experiments, was used to present a lecture on robotics by reading out the contents to the children making use of its speech synthesis capability. A quiz in a Runaround-game-show style after the lecture activated the children to recap the contents they acquired about how mobile robots work in principle. In this quiz, two LEGO Mindstorm EV3 robots were used to implement a strongly interactive scenario. Besides the thrill of being exposed to a mobile robot that would also react to the children, they were very excited and at the same time very concentrated. We got very positive feedback from the children as well as from their educators. To the best of our knowledge, this is one of only few attempts to use a robot like Pepper not as a tele-teaching tool, but as the teacher itself in order to engage pre-school children with complex robotics contents.}, language = {en} } @inproceedings{HofmannMatareNeumannetal.2018, author = {Hofmann, Till and Matar{\´e}, Victor and Neumann, Tobias and Sch{\"o}nitz, Sebastian and Henke, Christoph and Limpert, Nicolas and Niemueller, Tim and Ferrein, Alexander and Jeschke, Sabina and Lakemeyer, Gerhard}, title = {Enhancing Software and Hardware Reliability for a Successful Participation in the RoboCup Logistics League 2017}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-00308-1}, doi = {10.1007/978-3-030-00308-1_40}, pages = {486 -- 497}, year = {2018}, language = {en} } @article{FerreinSchifferLakemeyer2009, author = {Ferrein, Alexander and Schiffer, Stefan and Lakemeyer, Gerhard}, title = {Embedding fuzzy controllers in golog / Ferrein, Alexander ; Schiffer, Stefan ; Lakemeyer, Gerhard}, series = {IEEE International Conference on Fuzzy Systems, 2009. FUZZ-IEEE 2009}, journal = {IEEE International Conference on Fuzzy Systems, 2009. FUZZ-IEEE 2009}, publisher = {IEEE}, address = {New York}, isbn = {978-1-4244-3596-8}, pages = {894 -- 899}, year = {2009}, language = {en} } @inproceedings{DonnerRabelScholletal.2019, author = {Donner, Ralf and Rabel, Matthias and Scholl, Ingrid and Ferrein, Alexander and Donner, Marc and Geier, Andreas and John, Andr{\´e} and K{\"o}hler, Christian and Varga, Sebastian}, title = {Die Extraktion bergbaulich relevanter Merkmale aus 3D-Punktwolken eines untertagetauglichen mobilen Multisensorsystems}, series = {Tagungsband Geomonitoring}, booktitle = {Tagungsband Geomonitoring}, doi = {10.15488/4515}, pages = {91 -- 110}, year = {2019}, language = {de} } @article{NiemuellerFerreinBecketal.2010, author = {Niem{\"u}ller, Tim and Ferrein, Alexander and Beck, Daniel and Lakemeyer, Gerhard}, title = {Design Principles of the Component-Based Robot Software Framework Fawkes}, series = {Simulation, Modeling, and Programming for Autonomous Robots}, journal = {Simulation, Modeling, and Programming for Autonomous Robots}, pages = {300 -- 311}, year = {2010}, language = {en} } @inproceedings{StopforthDavrajhFerrein2017, author = {Stopforth, Riaan and Davrajh, Shaniel and Ferrein, Alexander}, title = {Design considerations of the duo fugam dual rotor UAV}, series = {2017 Pattern Recognition Association of South Africa and Robotics and Mechatronics (PRASA-RobMech)}, booktitle = {2017 Pattern Recognition Association of South Africa and Robotics and Mechatronics (PRASA-RobMech)}, isbn = {978-1-5386-2314-5}, doi = {10.1109/RoboMech.2017.8261115}, pages = {7 -- 13}, year = {2017}, language = {en} }