@article{Finger2016, author = {Finger, Felix}, title = {Senkrechtstarter: FH-Absolvent wird f{\"u}r Transportdrohne ausgezeichnet}, series = {campushunter: das etwas andere Karrieremagazin - Wintersemester 16/17}, journal = {campushunter: das etwas andere Karrieremagazin - Wintersemester 16/17}, number = {17. Regionalausgabe Aachen}, publisher = {Campushunter Media}, address = {Heidelberg}, issn = {2196-9426}, pages = {116 -- 117}, year = {2016}, language = {de} } @article{NeuJanserKhatibietal.2016, author = {Neu, Eugen and Janser, Frank and Khatibi, Akbar A. and Orifici, Adrian C.}, title = {Automated modal parameter-based anomaly detection under varying wind excitation}, series = {Structural Health Monitoring}, volume = {15}, journal = {Structural Health Monitoring}, number = {6}, publisher = {Sage}, address = {London}, issn = {1475-9217}, doi = {10.1177/1475921716665803}, pages = {1 -- 20}, year = {2016}, abstract = {Wind-induced operational variability is one of the major challenges for structural health monitoring of slender engineering structures like aircraft wings or wind turbine blades. Damage sensitive features often show an even bigger sensitivity to operational variability. In this study a composite cantilever was subjected to multiple mass configurations, velocities and angles of attack in a controlled wind tunnel environment. A small-scale impact damage was introduced to the specimen and the structural response measurements were repeated. The proposed damage detection methodology is based on automated operational modal analysis. A novel baseline preparation procedure is described that reduces the amount of user interaction to the provision of a single consistency threshold. The procedure starts with an indeterminate number of operational modal analysis identifications from a large number of datasets and returns a complete baseline matrix of natural frequencies and damping ratios that is suitable for subsequent anomaly detection. Mahalanobis distance-based anomaly detection is then applied to successfully detect the damage under varying severities of operational variability and with various degrees of knowledge about the present operational conditions. The damage detection capabilities of the proposed methodology were found to be excellent under varying velocities and angles of attack. Damage detection was less successful under joint mass and wind variability but could be significantly improved through the provision of the currently encountered operational conditions.}, language = {en} } @inproceedings{Czupalla2017, author = {Czupalla, Markus}, title = {Pflanzen oder Maschinen - was l{\"a}ßt uns auf dem Mars {\"u}berleben?}, series = {{\"U}berleben im Weltraum. Auf dem Weg zu neuen Grenzen. 21. Berliner Kolloquium der Daimler und Benz Stiftung 24. Mai 2017}, booktitle = {{\"U}berleben im Weltraum. Auf dem Weg zu neuen Grenzen. 21. Berliner Kolloquium der Daimler und Benz Stiftung 24. Mai 2017}, pages = {12 -- 12}, year = {2017}, language = {de} } @inproceedings{BlomeGerzerBaumstarkKhanetal.2017, author = {Blome, Hans-Joachim and Gerzer, Rupert and Baumstark-Khan, Christa and Ewald, Reinhold and Heinicke, Christiane and Czupalla, Markus and Carter, Layne and Anderson, Molly}, title = {{\"U}berleben im Weltraum. Auf dem Weg zu neuen Grenzen. 21. Berliner Kolloquium der Daimler und Benz Stiftung 24. Mai 2017}, pages = {15 Seiten}, year = {2017}, language = {de} } @phdthesis{Keinz2018, author = {Keinz, Jan}, title = {Optimization of a Dry Low NOx Micromix Combustor for an Industrial Gas Turbine Using Hydrogen-Rich Syngas Fuel}, publisher = {Universit{\´e} Libre de Bruxelles - Brussels School of Engineering Aero-Thermo-Mechanics}, address = {Br{\"u}ssel}, year = {2018}, language = {en} } @article{FingerBraunBil2018, author = {Finger, Felix and Braun, Carsten and Bil, Cees}, title = {Impact of electric propulsion technology and mission requirements on the performance of VTOL UAVs}, series = {CEAS Aeronautical Journal}, volume = {10}, journal = {CEAS Aeronautical Journal}, number = {3}, publisher = {Springer}, issn = {1869-5582 print}, doi = {10.1007/s13272-018-0352-x}, pages = {843}, year = {2018}, abstract = {One of the engineering challenges in aviation is the design of transitioning vertical take-off and landing (VTOL) aircraft. Thrust-borne flight implies a higher mass fraction of the propulsion system, as well as much increased energy consumption in the take-off and landing phases. This mass increase is typically higher for aircraft with a separate lift propulsion system than for aircraft that use the cruise propulsion system to support a dedicated lift system. However, for a cost-benefit trade study, it is necessary to quantify the impact the VTOL requirement and propulsion configuration has on aircraft mass and size. For this reason, sizing studies are conducted. This paper explores the impact of considering a supplemental electric propulsion system for achieving hovering flight. Key variables in this study, apart from the lift system configuration, are the rotor disk loading and hover flight time, as well as the electrical systems technology level for both batteries and motors. Payload and endurance are typically used as the measures of merit for unmanned aircraft that carry electro-optical sensors, and therefore the analysis focuses on these particular parameters.}, language = {en} } @article{Finger2017, author = {Finger, Felix}, title = {Vergleichende Leistungs- und Nutzenbewertung von VTOL- und CTOL-UAVs}, series = {Luft- und Raumfahrt : informieren, vernetzen, f{\"o}rdern / Hrsg.: Deutsche Gesellschaft f{\"u}r Luft- und Raumfahrt}, volume = {38}, journal = {Luft- und Raumfahrt : informieren, vernetzen, f{\"o}rdern / Hrsg.: Deutsche Gesellschaft f{\"u}r Luft- und Raumfahrt}, number = {1}, issn = {0173-6264}, pages = {44 -- 47}, year = {2017}, language = {de} } @inproceedings{Finger2016, author = {Finger, Felix}, title = {Comparative Performance and Benefit Assessment of VTOL and CTOL UAVs}, series = {Deutscher Luft- und Raumfahrtkongress (DLRK) 2016, 13.-15.9.2016}, booktitle = {Deutscher Luft- und Raumfahrtkongress (DLRK) 2016, 13.-15.9.2016}, pages = {10 Seiten}, year = {2016}, language = {en} } @inproceedings{FingerBraunBil2017, author = {Finger, Felix and Braun, Carsten and Bil, Cees}, title = {The Impact of Electric Propulsion on the Performance of VTOL UAVs}, series = {Deutscher Luft- und Raumfahrtkongress 2017, DLRK , M{\"u}nchen}, booktitle = {Deutscher Luft- und Raumfahrtkongress 2017, DLRK , M{\"u}nchen}, year = {2017}, language = {en} } @inproceedings{FingerBraunBil2017, author = {Finger, Felix and Braun, Carsten and Bil, Cees}, title = {A Review of Configuration Design for Distributed Propulsion Transitioning VTOL Aircraft}, series = {Asia-Pacific International Symposium on Aerospace Technology 2017, APISAT 2017, Seoul, Korea}, booktitle = {Asia-Pacific International Symposium on Aerospace Technology 2017, APISAT 2017, Seoul, Korea}, pages = {15 Seiten}, year = {2017}, language = {en} } @inproceedings{FingerBraunBil2018, author = {Finger, Felix and Braun, Carsten and Bil, Cees}, title = {Case studies in initial sizing for hybrid-electric general aviation aircraft}, series = {2018 AIAA/IEEE Electric Aircraft Technologies Symposium, Cincinnati, Ohio}, booktitle = {2018 AIAA/IEEE Electric Aircraft Technologies Symposium, Cincinnati, Ohio}, doi = {10.2514/6.2018-5005}, year = {2018}, language = {en} } @phdthesis{Beckmann2019, author = {Beckmann, Nils}, title = {Characterization of the hydrogen-dry-low-Nox-micromix-combustion-principle for hydrogen-methane fuel mixtures}, publisher = {RMIT University}, address = {Melbourne}, pages = {XV, 160 Seiten}, year = {2019}, language = {en} } @article{FingerGoetten2019, author = {Finger, Felix and G{\"o}tten, Falk}, title = {Neue Ans{\"a}tze f{\"u}r die Entwicklung von unbemannten Flugger{\"a}ten}, series = {Ingenieurspiegel}, volume = {2019}, journal = {Ingenieurspiegel}, number = {1}, isbn = {1868-5919}, pages = {67 -- 68}, year = {2019}, abstract = {Wie sieht das unbemannte Flugzeug von {\"U}bermorgen aus? Dieser Frage stellen sich Forscher an der Fachhochschule Aachen. Die weltweit rasant fortschreitende Entwicklung des Marktes f{\"u}r unbemannte Flugger{\"a}te (UAVs - „Unmanned Aerial Vehicles") bietet großes Potenzial f{\"u}r Wachstum und Wertsch{\"o}pfung. Unbemannte fliegende Systeme k{\"o}nnen - f{\"u}r bestimmte Anwendungsgebiete - wesentlich g{\"u}nstiger, kleiner und effizienter ausgelegt werden als bemannte L{\"o}sungen. Dabei sind sich viele Unternehmen {\"u}ber das m{\"o}gliche Potential dieser Technologie noch gar nicht bewusst.}, language = {de} } @article{GoettenFinger2020, author = {G{\"o}tten, Falk and Finger, Felix}, title = {PhoenAIX - Die modulare Transportdrohne}, series = {Ingenieurspiegel}, volume = {2020}, journal = {Ingenieurspiegel}, number = {1}, publisher = {Public Verlag}, address = {Bingen}, isbn = {1868-5919}, pages = {38 -- 40}, year = {2020}, abstract = {Die autonome, unbemannte Luftfahrt ist einer der Schl{\"u}sselsektoren f{\"u}r die Zukunft der Luftfahrt. In diesem rasant wachsenden Bereich nehmen senkrecht startende und senkrecht landende Flugzeuge (Vertical Take-Off and Landing - VTOL) einen besonderen Platz ein. Ein VTOL-Flugzeug (manchmal auch „Transitionsflugger{\"a}t" genannt) verbindet die Eigenschaft des Helikopters, {\"u}berall starten und landen zu k{\"o}nnen, mit den Geschwindigkeits-, Reichweiten und Flugdauervorteilen des Starrfl{\"u}glers. Grunds{\"a}tzlich wird die Senkrechtstart- und -landef{\"a}higkeit sowohl von zivilen als auch von milit{\"a}rischen Betreibern unbemannter Flugger{\"a}te (UAVs) gew{\"u}nscht. Trotzdem bietet der Markt nur eine geringe Anzahl von VTOL-UAVs, da qualitativ hochwertige Entw{\"u}rfe eine ausgesprochene Herausforderung in der Entwicklung darstellen. An der FH Aachen wird deshalb seit {\"u}ber 5 Jahren an der Auslegung und Analyse von solchen unbemannten VTOL Flugzeugen geforscht. Das neuste Projekt ist der Eigenentwurf einer großen, senkrechtstartenden Transportdrohne. Das „PhoenAIX" getaufte Flugger{\"a}t wird von Falk G{\"o}tten und Felix Finger im Rahmen einer EFRE-F{\"o}rderung entwickelt.}, language = {de} } @article{Maurischat2021, author = {Maurischat, Andreas}, title = {Algebraic independence of the Carlitz period and its hyperderivatives}, pages = {1 -- 12}, year = {2021}, language = {en} } @article{BohndickBosseJaenschetal.2021, author = {Bohndick, Carla and Bosse, Elke and J{\"a}nsch, Vanessa K. and Barnat, Miriam}, title = {How different diversity factors affect the perception of first-year requirements in higher education}, series = {Frontline Learning Research}, volume = {9}, journal = {Frontline Learning Research}, number = {2}, publisher = {EARLI}, issn = {2295-3159}, doi = {10.14786/flr.v9i2.667}, pages = {78 -- 95}, year = {2021}, abstract = {In the light of growing university entry rates, higher education institutions not only serve larger numbers of students, but also seek to meet first-year students' ever more diverse needs. Yet to inform universities how to support the transition to higher education, research only offers limited insights. Current studies tend to either focus on the individual factors that affect student success or they highlight students' social background and their educational biography in order to examine the achievement of selected, non-traditional groups of students. Both lines of research appear to lack integration and often fail to take organisational diversity into account, such as different types of higher education institutions or degree programmes. For a more comprehensive understanding of student diversity, the present study includes individual, social and organisational factors. To gain insights into their role for the transition to higher education, we examine how the different factors affect the students' perception of the formal and informal requirements of the first year as more or less difficult to cope with. As the perceived requirements result from both the characteristics of the students and the institutional context, they allow to investigate transition at the interface of the micro and the meso level of higher education. Latent profile analyses revealed that there are no profiles with complex patterns of perception of the first-year requirements, but the identified groups rather differ in the overall level of perceived challenges. Moreover, SEM indicates that the differences in the perception largely depend on the individual factors self-efficacy and volition.}, language = {en} } @article{GoettenHavermannBraunetal.2021, author = {G{\"o}tten, Falk and Havermann, Marc and Braun, Carsten and Marino, Matthew and Bil, Cees}, title = {Aerodynamic Investigations of UAV Sensor Turrets - A Combined Wind-tunnel and CFD Approach}, series = {SciTech 2021, AIAA SciTech Forum, online, WW, Jan 11-15, 2021}, journal = {SciTech 2021, AIAA SciTech Forum, online, WW, Jan 11-15, 2021}, publisher = {AIAA}, address = {Reston, Va.}, doi = {10.2514/6.2021-1535}, pages = {1 -- 12}, year = {2021}, language = {en} } @inproceedings{AyedStrieganKustereretal.2017, author = {Ayed, Anis Haj and Striegan, Constantin J. D. and Kusterer, Karsten and Funke, Harald and Kazari, M. and Horikawa, Atsushi and Okada, Kunio}, title = {Automated design space exploration of the hydrogen fueled "Micromix" combustor technology}, pages = {1 -- 8}, year = {2017}, abstract = {Combined with the use of renewable energy sources for its production, Hydrogen represents a possible alternative gas turbine fuel for future low emission power generation. Due to its different physical properties compared to other fuels such as natural gas, well established gas turbine combustion systems cannot be directly applied for Dry Low NOx (DLN) Hydrogen combustion. This makes the development of new combustion technologies an essential and challenging task for the future of hydrogen fueled gas turbines. The newly developed and successfully tested "DLN Micromix" combustion technology offers a great potential to burn hydrogen in gas turbines at very low NOx emissions. Aiming to further develop an existing burner design in terms of increased energy density, a redesign is required in order to stabilise the flames at higher mass flows and to maintain low emission levels. For this purpose, a systematic design exploration has been carried out with the support of CFD and optimisation tools to identify the interactions of geometrical and design parameters on the combustor performance. Aerodynamic effects as well as flame and emission formation are observed and understood time- and cost-efficiently. Correlations between single geometric values, the pressure drop of the burner and NOx production have been identified as a result. This numeric methodology helps to reduce the effort of manufacturing and testing to few designs for single validation campaigns, in order to confirm the flame stability and NOx emissions in a wider operating condition field.}, language = {en} } @article{AyedKustererFunkeetal.2017, author = {Ayed, Anis Haj and Kusterer, Karsten and Funke, Harald and Keinz, Jan and Bohn, D.}, title = {CFD based exploration of the dry-low-NOx hydrogen micromix combustion technology at increased energy densities}, series = {Propulsion and Power Research}, volume = {6}, journal = {Propulsion and Power Research}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {2212-540X}, doi = {10.1016/j.jppr.2017.01.005}, pages = {15 -- 24}, year = {2017}, language = {en} } @inproceedings{FunkeBeckmannKeinzetal.2021, author = {Funke, Harald and Beckmann, Nils and Keinz, Jan and Horikawa, Atsushi}, title = {30 years of dry low NOx micromix combustor research for hydrogen-rich fuels: an overview of past and present activities}, series = {Conference Proceedings Turbo Expo: Power for Land, Sea and Air, Volume 4B: Combustion, Fuels, and Emissions}, booktitle = {Conference Proceedings Turbo Expo: Power for Land, Sea and Air, Volume 4B: Combustion, Fuels, and Emissions}, publisher = {ASME}, address = {New York, NY}, isbn = {978-0-7918-8413-3}, doi = {10.1115/GT2020-16328}, pages = {14 Seiten}, year = {2021}, abstract = {The paper presents an overview of the past and present of low-emission combustor research with hydrogen-rich fuels at Aachen University of Applied Sciences. In 1990, AcUAS started developing the Dry-Low-NOx Micromix combustion technology. Micromix reduces NOx emissions using jet-in-crossflow mixing of multiple miniaturized fuel jets and combustor air with an inherent safety against flashback. At first, pure hydrogen as fuel was investigated with lab-scale applications. Later, Micromix prototypes were developed for the use in an industrial gas turbine Honeywell/Garrett GTCP-36-300, proving low NOx characteristics during real gas turbine operation, accompanied by the successful definition of safety laws and control system modifications. Further, the Micromix was optimized for the use in annular and can combustors as well as for fuel-flexibility with hydrogen-methane-mixtures and hydrogen-rich syngas qualities by means of extensive experimental and numerical simulations. In 2020, the latest Micromix application will be demonstrated in a commercial 2 MW-class gas turbine can-combustor with full-scale engine operation. The paper discusses the advances in Micromix research over the last three decades.}, language = {en} }