@article{StadlerGarveyEmbsetal.2014, author = {Stadler, Alexander Maximilian and Garvey, Christopher J. and Embs, Jan Peter and Koza, Michael Marek and Unruh, Tobias and Artmann, Gerhard and Zaccai, Guiseppe}, title = {Picosecond dynamics in haemoglobin from different species: A quasielastic neutron scattering study}, series = {Biochimica et biophysica acta (BBA): General Subjects}, volume = {1840}, journal = {Biochimica et biophysica acta (BBA): General Subjects}, number = {10}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1872-8006 (E-Journal); 0304-4165 (Print)}, doi = {10.1016/j.bbagen.2014.06.007}, pages = {2989 -- 2999}, year = {2014}, language = {en} } @article{SpietzSproewitzSeefeldtetal.2021, author = {Spietz, Peter and Spr{\"o}witz, Tom and Seefeldt, Patric and Grundmann, Jan Thimo and Jahnke, Rico and Mikschl, Tobias and Mikulz, Eugen and Montenegro, Sergio and Reershemius, Siebo and Renger, Thomas and Ruffer, Michael and Sasaki, Kaname and Sznajder, Maciej and T{\´o}th, Norbert and Ceriotti, Matteo and Dachwald, Bernd and Macdonald, Malcolm and McInnes, Colin and Seboldt, Wolfgang and Quantius, Dominik and Bauer, Waldemar and Wiedemann, Carsten and Grimm, Christian D. and Hercik, David and Ho, Tra-Mi and Lange, Caroline and Schmitz, Nicole}, title = {Paths not taken - The Gossamer roadmap's other options}, series = {Advances in Space Research}, volume = {67}, journal = {Advances in Space Research}, number = {9}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0273-1177}, doi = {10.1016/j.asr.2021.01.044}, pages = {2912 -- 2956}, year = {2021}, language = {en} } @article{SmithKotliarLammertynetal.2020, author = {Smith, Wayne and Kotliar, Konstantin and Lammertyn, Leandi and Ramoshaba, Nthai E. and Vilser, Walthard and Huisman, Hugo W. and Schutte, Aletta E.}, title = {Retinal vessel caliber and caliber responses in true normotensive black and white adults: The African-PREDICT study}, series = {Microvascular Research}, volume = {128}, journal = {Microvascular Research}, number = {Article 103937}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0026-2862}, doi = {10.1016/j.mvr.2019.103937}, year = {2020}, abstract = {Purpose Globally, a detrimental shift in cardiovascular disease risk factors and a higher mortality level are reported in some black populations. The retinal microvasculature provides early insight into the pathogenesis of systemic vascular diseases, but it is unclear whether retinal vessel calibers and acute retinal vessel functional responses differ between young healthy black and white adults. Methods We included 112 black and 143 white healthy normotensive adults (20-30 years). Retinal vessel calibers (central retinal artery and vein equivalent (CRAE and CRVE)) were calculated from retinal images and vessel caliber responses to flicker light induced provocation (FLIP) were determined. Additionally, ambulatory blood pressure (BP), anthropometry and blood samples were collected. Results The groups displayed similar 24 h BP profiles and anthropometry (all p > .24). Black participants demonstrated a smaller CRAE (158 ± 11 vs. 164 ± 11 MU, p < .001) compared to the white group, whereas CRVE was similar (p = .57). In response to FLIP, artery maximal dilation was greater in the black vs. white group (5.6 ± 2.1 vs. 3.3 ± 1.8\%; p < .001). Conclusions Already at a young age, healthy black adults showed narrower retinal arteries relative to the white population. Follow-up studies are underway to show if this will be related to increased risk for hypertension development. The reason for the larger vessel dilation responses to FLIP in the black population is unclear and warrants further investigation.}, language = {en} } @article{SeifarthGossmannGrosseetal.2015, author = {Seifarth, Volker and Goßmann, Matthias and Grosse, J. O. and Becker, C. and Heschel, I. and Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l}, title = {Development of a Bioreactor to Culture Tissue Engineered Ureters Based on the Application of Tubular OPTIMAIX 3D Scaffolds}, series = {Urologia Internationalis}, volume = {2015}, journal = {Urologia Internationalis}, number = {95}, publisher = {Karger}, address = {Basel}, issn = {0042-1138}, doi = {10.1159/000368419}, pages = {106 -- 113}, year = {2015}, language = {en} } @article{SeefeldtDachwald2021, author = {Seefeldt, Patric and Dachwald, Bernd}, title = {Temperature increase on folded solar sail membranes}, series = {Advances in Space Research}, volume = {67}, journal = {Advances in Space Research}, number = {9}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0273-1177}, doi = {10.1016/j.asr.2020.09.026}, pages = {2688 -- 2695}, year = {2021}, language = {en} } @article{ScholzRomagnoliDachwaldetal.2011, author = {Scholz, Christina and Romagnoli, Daniele and Dachwald, Bernd and Theil, Stephan}, title = {Performance analysis of an attitude control system for solar sails using sliding masses}, series = {Advances in Space Research}, volume = {48}, journal = {Advances in Space Research}, number = {11}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0273-1177}, pages = {1822 -- 1835}, year = {2011}, language = {en} } @article{ScholzLeyDachwaldetal.2010, author = {Scholz, A. and Ley, Wilfried and Dachwald, Bernd and Miau, J. J. and Juang, J. C.}, title = {Flight results of the COMPASS-1 picosatellite mission}, series = {Acta Astronautica. 67 (2010), H. 9-10}, journal = {Acta Astronautica. 67 (2010), H. 9-10}, isbn = {0094-5765}, pages = {1289 -- 1298}, year = {2010}, language = {en} } @article{SchaelAtanasyanBerdugoetal.2019, author = {Schael, S. and Atanasyan, A. and Berdugo, J. and Bretz, T. and Czupalla, Markus and Dachwald, Bernd and Doetinchem, P. von and Duranti, M. and Gast, H. and Karpinski, W. and Kirn, T. and L{\"u}belsmeyer, K. and Ma{\~n}a, C. and Marrocchesi, P.S. and Mertsch, P. and Moskalenko, I.V. and Schervan, T. and Schluse, M. and Schr{\"o}der, K.-U. and Schultz von Dratzig, A. and Senatore, C. and Spies, L. and Wakely, S.P. and Wlochal, M. and Uglietti, D. and Zimmermann, J.}, title = {AMS-100: The next generation magnetic spectrometer in space - An international science platform for physics and astrophysics at Lagrange point 2}, series = {Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment}, volume = {944}, journal = {Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment}, number = {162561}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0168-9002}, doi = {10.1016/j.nima.2019.162561}, year = {2019}, language = {en} } @article{PeloniDachwaldCeriotti2017, author = {Peloni, Alessandro and Dachwald, Bernd and Ceriotti, Matteo}, title = {Multiple near-earth asteroid rendezvous mission: Solar-sailing options}, series = {Advances in Space Research}, journal = {Advances in Space Research}, number = {In Press, Corrected Proof}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0273-1177}, doi = {10.1016/j.asr.2017.10.017}, year = {2017}, language = {en} } @article{PeloniCeriottiDachwald2016, author = {Peloni, Alessandro and Ceriotti, Matteo and Dachwald, Bernd}, title = {Solar-sail trajectory design for a multiple near-earth-asteroid rendezvous mission}, series = {Journal of Guidance, Control, and Dynamics}, volume = {39}, journal = {Journal of Guidance, Control, and Dynamics}, number = {12}, publisher = {AIAA}, address = {Reston, Va.}, issn = {0731-5090}, doi = {10.2514/1.G000470}, pages = {2712 -- 2724}, year = {2016}, abstract = {The scientific interest for near-Earth asteroids as well as the interest in potentially hazardous asteroids from the perspective of planetary defense led the space community to focus on near-Earth asteroid mission studies. A multiple near-Earth asteroid rendezvous mission with close-up observations of several objects can help to improve the characterization of these asteroids. This work explores the design of a solar-sail spacecraft for such a mission, focusing on the search of possible sequences of encounters and the trajectory optimization. This is done in two sequential steps: a sequence search by means of a simplified trajectory model and a set of heuristic rules based on astrodynamics, and a subsequent optimization phase. A shape-based approach for solar sailing has been developed and is used for the first phase. The effectiveness of the proposed approach is demonstrated through a fully optimized multiple near-Earth asteroid rendezvous mission. The results show that it is possible to visit five near-Earth asteroids within 10 years with near-term solar-sail technology.}, language = {en} } @article{MikuckiSchulerDigeletal.2023, author = {Mikucki, Jill Ann and Schuler, C. G. and Digel, Ilya and Kowalski, Julia and Tuttle, M. J. and Chua, Michelle and Davis, R. and Purcell, Alicia and Ghosh, D. and Francke, G. and Feldmann, M. and Espe, C. and Heinen, Dirk and Dachwald, Bernd and Clemens, Joachim and Lyons, W. B. and Tulaczyk, S.}, title = {Field-Based planetary protection operations for melt probes: validation of clean access into the blood falls, antarctica, englacial ecosystem}, series = {Astrobiology}, volume = {23}, journal = {Astrobiology}, number = {11}, publisher = {Liebert}, address = {New York, NY}, issn = {1557-8070 (online)}, doi = {10.1089/ast.2021.0102}, pages = {1165 -- 1178}, year = {2023}, abstract = {Subglacial environments on Earth offer important analogs to Ocean World targets in our solar system. These unique microbial ecosystems remain understudied due to the challenges of access through thick glacial ice (tens to hundreds of meters). Additionally, sub-ice collections must be conducted in a clean manner to ensure sample integrity for downstream microbiological and geochemical analyses. We describe the field-based cleaning of a melt probe that was used to collect brine samples from within a glacier conduit at Blood Falls, Antarctica, for geomicrobiological studies. We used a thermoelectric melting probe called the IceMole that was designed to be minimally invasive in that the logistical requirements in support of drilling operations were small and the probe could be cleaned, even in a remote field setting, so as to minimize potential contamination. In our study, the exterior bioburden on the IceMole was reduced to levels measured in most clean rooms, and below that of the ice surrounding our sampling target. Potential microbial contaminants were identified during the cleaning process; however, very few were detected in the final englacial sample collected with the IceMole and were present in extremely low abundances (∼0.063\% of 16S rRNA gene amplicon sequences). This cleaning protocol can help minimize contamination when working in remote field locations, support microbiological sampling of terrestrial subglacial environments using melting probes, and help inform planetary protection challenges for Ocean World analog mission concepts.}, language = {en} } @article{MaiwaldDachwald2010, author = {Maiwald, Volker and Dachwald, Bernd}, title = {Mission design for a multiple-rendezvous mission to Jupiter's trojans}, pages = {3}, year = {2010}, abstract = {In this paper, we will provide a feasible mission design for a multiple-rendezvous mission to Jupiter's Trojans. It is based on solar electric propulsion, as being currently used on the DAWN spacecraft, and other flight-proven technology. First, we have selected a set of mission objectives, the prime objective being the detection of water -especially subsurface water -to provide evidence for the Trojans' formation at large solar distances. Based on DAWN and other comparable missions, we have determined suitable payload instruments to achieve these objectives. Afterwards, we have designed a spacecraft that is able to carry the selected payload to the Trojan region and rendezvous successively with three target bodies within a maximum mission duration of 15 years. Accurate low-thrust trajectories have been obtained with a global low-thrust trajectory optimization program (InTrance). During the transfer from Earth to the first target, the spacecraft is propelled by two RIT-22 ion engines from EADS Astrium, whereas a single RIT-15 is used for transfers within the Trojan region to reduce the required power. For power generation, the spacecraft uses a multi-junction solar array that is supported by concentrators. To achieve moderate mission costs, we have restricted the launch mass to a maximum of 1600 kg, the maximum interplanetary injection capability of a Soyuz/Fregat launcher. Our final layout has a mass of 1400 kg, yielding a margin of about 14\%. Nestor (a member of the L4-population) was determined as the first mission target. It can be reached within 4.6 years from launch. The fuel mass ratio for this transfer is about 35\%. The stay time at Nestor is 1.2 years. Eurymedon was selected as the second target (transfer time 3.5 years, stay time 3.0 years) and Irus as the third target (transfer time 2.2 years). The transfers within the Trojan L4-population can be accomplished with fuel mass ratios of about 3\% for each trajectory leg. Including the stay times in orbit around the targets, the mission can be accomplished within a total duration of about 14.5 years. According to our mission analysis, it is also feasible to fly to the L5-population with similar flight times. It has to be noted that -for a first analysis -we have taken only the named targets into account. Allowing also rendezvous with unnamed objects will very likely decrease the mission duration. Based on a scaling of DAWN's mission costs (due to comparable scientific instruments and mission objectives), and taking into account the longer mission duration and the potential re-use of already developed technology, we have estimated that these three rendezvous can be accomplished with a budget of about 250 Million Euros, i.e. about 25\% of ROSETTA's budget.}, language = {en} } @article{LyonsMikuckiGermanetal.2019, author = {Lyons, W. Berry and Mikucki, Jill A. and German, Laura A. and Welch, Kathleen A. and Welch, Susan A. and Gardener, Christopher B. and Tulaczyk, Slawek M. and Pettit, Erin C. and Kowalski, Julia and Dachwald, Bernd}, title = {The Geochemistry of Englacial Brine from Taylor Glacier, Antarctica}, series = {Journal of Geophysical Research: Biogeosciences}, journal = {Journal of Geophysical Research: Biogeosciences}, publisher = {Wiley}, address = {Hoboken}, issn = {2169-8961}, doi = {10.1029/2018JG004411}, year = {2019}, language = {en} } @article{LoebSchartnerDachwaldetal.2012, author = {Loeb, Horst Wolfgang and Schartner, Karl-Heinz and Dachwald, Bernd and Ohndorf, Andreas and Seboldt, Wolfgang}, title = {Interstellar heliopause probe}, series = {Труды МАИ}, journal = {Труды МАИ}, number = {60}, publisher = {Moskauer Staatliches Luftfahrtinstitut (МАИ)}, address = {Moskau}, pages = {2 -- 2}, year = {2012}, abstract = {There is common agreement within the scientific community that in order to understand our local galactic environment it will be necessary to send a spacecraft into the region beyond the solar wind termination shock. Considering distances of 200 AU for a new mission, one needs a spacecraft traveling at a speed of close to 10 AU/yr in order to keep the mission duration in the range of less than 25 yrs, a transfer time postulated by European Space Agency (ESA). Two propulsion options for the mission have been proposed and discussed so far: the solar sail propulsion and the ballistic/radioisotope-electric propulsion (REP). As a further alternative, we here investigate a combination of solar-electric propulsion (SEP) and REP. The SEP stage consists of six 22-cms diameter RIT-22 ion thrusters working with a high specific impulse of 7377 s corresponding to a positive grid voltage of 5 kV. Solar power of 53 kW at begin of mission (BOM) is provided by a lightweight solar array.}, language = {en} } @article{LeipoldFichtnerHeberetal.2006, author = {Leipold, M. and Fichtner, H. and Heber, B. and Groepper, P. and Lascar, S. and Burger, F. and Eiden, M. and Niederstadt, T. and Sickinger, C. and Herbeck, L. and Dachwald, Bernd and Seboldt, Wolfgang}, title = {Heliopause Explorer - A Sailcraft Mission to the Outer Boundaries of the Solar System}, series = {Acta Astronautica. 59 (2006), H. 8-11}, journal = {Acta Astronautica. 59 (2006), H. 8-11}, isbn = {0094-5765}, pages = {786 -- 796}, year = {2006}, language = {en} } @article{KraemerDaabMuelleretal.2013, author = {Kr{\"a}mer, Stefan and Daab, Dominique Jonas and M{\"u}ller, Brigitte and Wagner, Tobias and Baader, Fabian and Hessel, Joana and Gdalewitsch, Georg and Plescher, Engelbert and Dachwald, Bernd and Wahle, Michael and Gierse, Andreas and Vetter, Rudolf and Pf{\"u}tzenreuter, Lysan}, title = {Development and flight-testing of a system to isolate vibrations for microgravity experiments on sounding rockets}, series = {21st ESA Symposium on Rocket and Balloon Research}, journal = {21st ESA Symposium on Rocket and Balloon Research}, pages = {1 -- 8}, year = {2013}, language = {en} } @article{KowalskiLinderZierkeetal.2016, author = {Kowalski, Julia and Linder, Peter and Zierke, S. and Wulfen, B. van and Clemens, J. and Konstantinidis, K. and Ameres, G. and Hoffmann, R. and Mikucki, J. and Tulaczyk, S. and Funke, O. and Blandfort, D. and Espe, Clemens and Feldmann, Marco and Francke, Gero and Hiecker, S. and Plescher, Engelbert and Sch{\"o}ngarth, Sarah and Dachwald, Bernd and Digel, Ilya and Artmann, Gerhard and Eliseev, D. and Heinen, D. and Scholz, F. and Wiebusch, C. and Macht, S. and Bestmann, U. and Reineking, T. and Zetzsche, C. and Schill, K. and F{\"o}rstner, R. and Niedermeier, H. and Szumski, A. and Eissfeller, B. and Naumann, U. and Helbing, K.}, title = {Navigation technology for exploration of glacier ice with maneuverable melting probes}, series = {Cold Regions Science and Technology}, journal = {Cold Regions Science and Technology}, number = {123}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0165-232X}, doi = {10.1016/j.coldregions.2015.11.006}, pages = {53 -- 70}, year = {2016}, abstract = {The Saturnian moon Enceladus with its extensive water bodies underneath a thick ice sheet cover is a potential candidate for extraterrestrial life. Direct exploration of such extraterrestrial aquatic ecosystems requires advanced access and sampling technologies with a high level of autonomy. A new technological approach has been developed as part of the collaborative research project Enceladus Explorer (EnEx). The concept is based upon a minimally invasive melting probe called the IceMole. The force-regulated, heater-controlled IceMole is able to travel along a curved trajectory as well as upwards. Hence, it allows maneuvers which may be necessary for obstacle avoidance or target selection. Maneuverability, however, necessitates a sophisticated on-board navigation system capable of autonomous operations. The development of such a navigational system has been the focal part of the EnEx project. The original IceMole has been further developed to include relative positioning based on in-ice attitude determination, acoustic positioning, ultrasonic obstacle and target detection integrated through a high-level sensor fusion. This paper describes the EnEx technology and discusses implications for an actual extraterrestrial mission concept.}, language = {en} } @article{KonstantinidisFloresMartinezDachwaldetal.2015, author = {Konstantinidis, Konstantinos and Flores Martinez, Claudio and Dachwald, Bernd and Ohndorf, Andreas and Dykta, Paul and Bowitz, Pascal and Rudolph, Martin and Digel, Ilya and Kowalski, Julia and Voigt, Konstantin and F{\"o}rstner, Roger}, title = {A lander mission to probe subglacial water on Saturn's moon enceladus for life}, series = {Acta astronautica}, volume = {Vol. 106}, journal = {Acta astronautica}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1879-2030 (E-Journal); 0094-5765 (Print)}, pages = {63 -- 89}, year = {2015}, language = {en} } @article{KezerashviliDachwald2021, author = {Kezerashvili, Roman Ya and Dachwald, Bernd}, title = {Preface: Solar sailing: Concepts, technology, and missions II}, series = {Advances in Space Research}, volume = {67}, journal = {Advances in Space Research}, number = {9}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0273-1177}, doi = {10.1016/j.asr.2021.01.037}, pages = {2559 -- 2560}, year = {2021}, language = {en} } @article{JanThimoBauerBieleetal.2019, author = {Jan Thimo, Grundmann and Bauer, Waldemar and Biele, Jens and Boden, Ralf and Ceriotti, Matteo and Cordero, Federico and Dachwald, Bernd and Dumont, Etienne and Grimm, Christian D. and Hercik, David}, title = {Capabilities of Gossamer-1 derived small spacecraft solar sails carrying Mascot-derived nanolanders for in-situ surveying of NEAs}, series = {Acta Astronautica}, volume = {156}, journal = {Acta Astronautica}, number = {3}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0094-5765}, doi = {10.1016/j.actaastro.2018.03.019}, pages = {330 -- 362}, year = {2019}, language = {en} }