@misc{BurlageHoeraufKlandtetal.1998, author = {Burlage, Thomas and H{\"o}rauf, Martin and Klandt, Michael and Wahle, Michael}, title = {Schwingungsd{\"a}mpfer : Offenlegungsschrift}, publisher = {Deutsches Patent- und Markenamt / Europ{\"a}isches Patentamt}, address = {M{\"u}nchen / Den Hague}, pages = {14 S. : graph. Darst.}, year = {1998}, language = {de} } @book{Wahle1995, author = {Wahle, Michael}, title = {Grundlagen der Maschinen- und Strukturdynamik. - (H{\"o}here Technische Mechanik ; 2)}, edition = {1. Aufl.}, publisher = {Mainz}, address = {Aachen}, isbn = {3-930911-61-2}, pages = {216 S. : graph. Darst.}, year = {1995}, language = {de} } @inproceedings{VeettilRakshitSchopenetal.2022, author = {Veettil, Yadu Krishna Morassery and Rakshit, Shantam and Schopen, Oliver and Kemper, Hans and Esch, Thomas and Shabani, Bahman}, title = {Automated Control System Strategies to Ensure Safety of PEM Fuel Cells Using Kalman Filters}, series = {Proceedings of the 7th International Conference and Exhibition on Sustainable Energy and Advanced Materials (ICE-SEAM 2021), Melaka, Malaysia}, booktitle = {Proceedings of the 7th International Conference and Exhibition on Sustainable Energy and Advanced Materials (ICE-SEAM 2021), Melaka, Malaysia}, editor = {Bin Abdollah, Mohd Fadzli and Amiruddin, Hilmi and Singh, Amrik Singh Phuman and Munir, Fudhail Abdul and Ibrahim, Asriana}, publisher = {Springer Nature}, address = {Singapore}, isbn = {978-981-19-3178-9}, issn = {2195-4356}, doi = {10.1007/978-981-19-3179-6_55}, pages = {296 -- 299}, year = {2022}, abstract = {Having well-defined control strategies for fuel cells, that can efficiently detect errors and take corrective action is critically important for safety in all applications, and especially so in aviation. The algorithms not only ensure operator safety by monitoring the fuel cell and connected components, but also contribute to extending the health of the fuel cell, its durability and safe operation over its lifetime. While sensors are used to provide peripheral data surrounding the fuel cell, the internal states of the fuel cell cannot be directly measured. To overcome this restriction, Kalman Filter has been implemented as an internal state observer. Other safety conditions are evaluated using real-time data from every connected sensor and corrective actions automatically take place to ensure safety. The algorithms discussed in this paper have been validated thorough Model-in-the-Loop (MiL) tests as well as practical validation at a dedicated test bench.}, language = {en} } @inproceedings{BlomeGerzerBaumstarkKhanetal.2017, author = {Blome, Hans-Joachim and Gerzer, Rupert and Baumstark-Khan, Christa and Ewald, Reinhold and Heinicke, Christiane and Czupalla, Markus and Carter, Layne and Anderson, Molly}, title = {{\"U}berleben im Weltraum. Auf dem Weg zu neuen Grenzen. 21. Berliner Kolloquium der Daimler und Benz Stiftung 24. Mai 2017}, pages = {15 Seiten}, year = {2017}, language = {de} } @article{Finger2017, author = {Finger, Felix}, title = {Vergleichende Leistungs- und Nutzenbewertung von VTOL- und CTOL-UAVs}, series = {Luft- und Raumfahrt : informieren, vernetzen, f{\"o}rdern / Hrsg.: Deutsche Gesellschaft f{\"u}r Luft- und Raumfahrt}, volume = {38}, journal = {Luft- und Raumfahrt : informieren, vernetzen, f{\"o}rdern / Hrsg.: Deutsche Gesellschaft f{\"u}r Luft- und Raumfahrt}, number = {1}, issn = {0173-6264}, pages = {44 -- 47}, year = {2017}, language = {de} } @article{BaaderBoxbergChenetal.2023, author = {Baader, Fabian and Boxberg, Marc S. and Chen, Qian and F{\"o}rstner, Roger and Kowalski, Julia and Dachwald, Bernd}, title = {Field-test performance of an ice-melting probe in a terrestrial analogue environment}, series = {Icarus}, journal = {Icarus}, number = {409}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.icarus.2023.115852}, pages = {Artikel 115852}, year = {2023}, abstract = {Melting probes are a proven tool for the exploration of thick ice layers and clean sampling of subglacial water on Earth. Their compact size and ease of operation also make them a key technology for the future exploration of icy moons in our Solar System, most prominently Europa and Enceladus. For both mission planning and hardware engineering, metrics such as efficiency and expected performance in terms of achievable speed, power requirements, and necessary heating power have to be known. Theoretical studies aim at describing thermal losses on the one hand, while laboratory experiments and field tests allow an empirical investigation of the true performance on the other hand. To investigate the practical value of a performance model for the operational performance in extraterrestrial environments, we first contrast measured data from terrestrial field tests on temperate and polythermal glaciers with results from basic heat loss models and a melt trajectory model. For this purpose, we propose conventions for the determination of two different efficiencies that can be applied to both measured data and models. One definition of efficiency is related to the melting head only, while the other definition considers the melting probe as a whole. We also present methods to combine several sources of heat loss for probes with a circular cross-section, and to translate the geometry of probes with a non-circular cross-section to analyse them in the same way. The models were selected in a way that minimizes the need to make assumptions about unknown parameters of the probe or the ice environment. The results indicate that currently used models do not yet reliably reproduce the performance of a probe under realistic conditions. Melting velocities and efficiencies are constantly overestimated by 15 to 50 \% in the models, but qualitatively agree with the field test data. Hence, losses are observed, that are not yet covered and quantified by the available loss models. We find that the deviation increases with decreasing ice temperature. We suspect that this mismatch is mainly due to the too restrictive idealization of the probe model and the fact that the probe was not operated in an efficiency-optimized manner during the field tests. With respect to space mission engineering, we find that performance and efficiency models must be used with caution in unknown ice environments, as various ice parameters have a significant effect on the melting process. Some of these are difficult to estimate from afar.}, language = {en} } @inproceedings{Mertens1999, author = {Mertens, Josef}, title = {Some important results of the technology programme RaWid}, series = {New Results in Numerical and Experimental Fluid Mechanics : Contributions to the 11th AG STAB/DGLR Symposium Berlin, Germany 1998. - Vol. 2. - (Notes on Numerical Fluid Mechanics ; 72)}, booktitle = {New Results in Numerical and Experimental Fluid Mechanics : Contributions to the 11th AG STAB/DGLR Symposium Berlin, Germany 1998. - Vol. 2. - (Notes on Numerical Fluid Mechanics ; 72)}, editor = {Nitsche, Wolfgang}, publisher = {Springer Fachmedien}, address = {Wiesbaden}, isbn = {978-3-663-10903-7 (Print)}, doi = {10.1007/978-3-663-10901-3_41}, pages = {315 -- 322}, year = {1999}, language = {en} } @techreport{EschFunkeRoosen2010, author = {Esch, Thomas and Funke, Harald and Roosen, Petra}, title = {SIoBiA - Safety Implications of Biofuels in Aviation}, publisher = {EASA}, address = {K{\"o}ln}, pages = {279 Seiten}, year = {2010}, abstract = {Biofuels potentially interesting also for aviation purposes are predominantly liquid fuels produced from biomass. The most common biofuels today are biodiesel and bioethanol. Since diesel engines are rather rare in aviation this survey is focusing on ethanol admixed to gasoline products. The Directive 2003/30/EC of the European Parliament and the Council of May 8th 2003 on the promotion of the use of biofuels or other renewable fuels for transport encourage a growing admixture of biogenic fuel components to fossil automotive gasoline. Some aircraft models equipped with spark ignited piston engines are approved for operation with automotive gasoline, frequently called "MOGAS" (motor gasoline). The majority of those approvals is limited to MOGAS compositions that do not contain methanol or ethanol beyond negligible amounts. In the past years (bio-)MTBE or (bio-)ETBE have been widely used as blending component of automotive gasoline whilst the usage of low-molecular alcohols like methanol or ethanol has been avoided due to the handling problems especially with regard to the strong affinity for water. With rising mandatory bio-admixtures the conversion of the basic biogenic ethanol to ETBE, causing a reduction of energetic payoff, becomes more and more unattractive. Therefore the direct ethanol admixture is accordingly favoured. Due to the national enforcements of the directive 2003/30/EC more oxygenates produced from organic materials like bioethanol have started to appear in automotive gasolines already. The current fuel specification EN 228 already allows up to 3 \% volume per volume (v/v) (bio-)methanol or up to 5 \% v/v (bio-)ethanol as fuel components. This is also roughly the amount of biogenic components to comply with the legal requirements to avoid monetary penalties for producers and distributors of fuels. Since automotive fuel is cheaper than the common aviation gasoline (AVGAS), creates less problems with lead deposits in the engine, and in general produces less pollutants it is strongly favoured by pilots. But being designed for a different set of usage scenarios the use of automotive fuel with low molecular alcohols for aircraft operation may have adverse effects in aviation operation. Increasing amounts of ethanol admixtures impose various changes in the gasoline's chemical and physical properties, some of them rather unexpected and not within the range of flight experiences even of long-term pilots.}, language = {en} } @inproceedings{TamaldinMansorMatYaminetal.2022, author = {Tamaldin, Noreffendy and Mansor, Muhd Rizuan and Mat Yamin, Ahmad Kamal and Bin Abdollah, Mohd Fazli and Esch, Thomas and Tonoli, Andrea and Reisinger, Karl Heinz and Sprenger, Hanna and Razuli, Hisham}, title = {Development of UTeM United Future Fuel Design Training Center Under Erasmus+ United Program}, series = {Proceedings of the 7th International Conference and Exhibition on Sustainable Energy and Advanced Materials (ICE-SEAM 2021), Melaka, Malaysia}, booktitle = {Proceedings of the 7th International Conference and Exhibition on Sustainable Energy and Advanced Materials (ICE-SEAM 2021), Melaka, Malaysia}, editor = {Bin Abdollah, Mohd Fadzli and Amiruddin, Hilmi and Singh, Amrik Singh Phuman and Munir, Fudhail Abdul and Ibrahim, Asriana}, publisher = {Springer Nature}, address = {Singapore}, isbn = {978-981-19-3178-9}, issn = {2195-4356}, doi = {10.1007/978-981-19-3179-6_50}, pages = {274 -- 278}, year = {2022}, abstract = {The industrial revolution IR4.0 era have driven many states of the art technologies to be introduced especially in the automotive industry. The rapid development of automotive industries in Europe have created wide industry gap between European Union (EU) and developing countries such as in South-East Asia (SEA). Indulging this situation, FH Joanneum, Austria together with European partners from FH Aachen, Germany and Politecnico Di Torino, Italy is taking initiative to close the gap utilizing the Erasmus+ United grant from EU. A consortium was founded to engage with automotive technology transfer using the European ramework to Malaysian, Indonesian and Thailand Higher Education Institutions (HEI) as well as automotive industries. This could be achieved by establishing Engineering Knowledge Transfer Unit (EKTU) in respective SEA institutions guided by the industry partners in their respective countries. This EKTU could offer updated, innovative, and high-quality training courses to increase graduate's employability in higher education institutions and strengthen relations between HEI and the wider economic and social environment by addressing Universityindustry cooperation which is the regional priority for Asia. It is expected that, the Capacity Building Initiative would improve the quality of higher education and enhancing its relevance for the labor market and society in the SEA partners. The outcome of this project would greatly benefit the partners in strong and complementary partnership targeting the automotive industry and enhanced larger scale international cooperation between the European and SEA partners. It would also prepare the SEA HEI in sustainable partnership with Automotive industry in the region as a mean of income generation in the future.}, language = {en} } @inproceedings{BarnatBosseMergneretal.2017, author = {Barnat, Miriam and Bosse, Elke and Mergner, Julia and J{\"a}nsch, Vanessa}, title = {Entwicklung studienrelevanter Kompetenzen im Zusammenspiel mit Studieneinstiegsangeboten}, series = {KoBF-Auswertungsworkshop 31.05.-01.06.2017}, booktitle = {KoBF-Auswertungsworkshop 31.05.-01.06.2017}, pages = {53 Seiten}, year = {2017}, language = {de} } @misc{MayntzKeimerTegtmeyeretal.2021, author = {Mayntz, Joscha and Keimer, Jona and Tegtmeyer, Philipp and Dahmann, Peter and Hille, Sebastian and Stumpf, Eike and Fisher, Alex and Dorrington, Graham}, title = {Aerodynamic Investigation on Efficient Inflight Transition of a Propeller from Propulsion to Regeneration Mode}, series = {AIAA SCITECH 2022 Forum}, journal = {AIAA SCITECH 2022 Forum}, publisher = {AIAA}, address = {Reston, Va.}, doi = {10.2514/6.2022-0546}, year = {2021}, abstract = {This paper discusses a new way of inflight power regeneration for electric or hybrid-electric driven general aviation aircraft with one powertrain for both configurations. Three different approaches for the shift from propulsion to regeneration mode are analyzed. Numerical cal-culation and wind tunnel results are compared and show the highest regeneration potential for the "Windmill" approach, where the propeller blades are flipped, and rotation is reversed. A combination of all regeneration approaches for a realistic flight mission is discussed.}, language = {en} } @misc{Rosenkranz2001, author = {Rosenkranz, Josef}, title = {{\"U}berwachungsvorrichtung f{\"u}r eine Auswuchtmaschine : Patentschrift}, publisher = {Deutsches Patent- und Markenamt}, address = {M{\"u}nchen}, pages = {6 S. : graph. Darst.}, year = {2001}, language = {de} } @inproceedings{HuthElsenHartwigetal.2006, author = {Huth, Thomas and Elsen, Olaf and Hartwig, Christoph and Esch, Thomas}, title = {Innovative modular valve trains for 2015 - logistic benefits by EMVT}, series = {IFAC Proceedings Volumes, Volume 39, Issue 3}, booktitle = {IFAC Proceedings Volumes, Volume 39, Issue 3}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.3182/20060517-3-FR-2903.00172}, pages = {315 -- 320}, year = {2006}, abstract = {In this paper the way to a 5-day-car with respect to a modular valve train systems for spark ignited combustion engines is shown. The necessary product diversity is shift from mechanical or physical components to software components. Therefore, significant improvements of logistic indicators are expected and shown. The working principle of a camless cylinder head with respect to an electromagnetical valve train (EMVT) is explained and it is demonstrated that shifting physical diversity to software is feasible. The future design of combustion engine systems including customisation can be supported by a set of assistance tools which is shown exemplary.}, language = {en} } @inproceedings{KemperHellenbroichEsch2009, author = {Kemper, Hans and Hellenbroich, Gereon and Esch, Thomas}, title = {Concept of an innovative passenger-car hybrid drive for European driving conditions}, series = {Hybrid vehicles and energy management : 6th symposium ; 18th and 19th February 2009, Stadthalle Braunschweig}, booktitle = {Hybrid vehicles and energy management : 6th symposium ; 18th and 19th February 2009, Stadthalle Braunschweig}, publisher = {Gesamtzentrum f{\"u}r Verkehr (GZVB)}, address = {Braunschweig}, isbn = {978-3-937655-20-8}, pages = {264 -- 287}, year = {2009}, abstract = {The downsizing of spark ignition engines in conjunction with turbocharging is considered to be a promising method for reducing CO₂ emissions. Using this concept, FEV has developed a new, highly efficient drivetrain to demonstrate fuel consumption reduction and drivability in a vehicle based on the Ford Focus ST. The newly designed 1.8L turbocharged gasoline engine incorporates infinitely variable intake and outlet control timing and direct fuel injection utilizing piezo injectors centrally located. In addition, this engine uses a prototype FEV engine control system, with software that was developed and adapted entirely by FEV. The vehicle features a 160 kW engine with a maximum mean effective pressure of 22.4 bar and 34 \% savings in simulated fuel consumption. During the first stage, a new electrohydraulically actuated hybrid transmission with seven forward gears and one reverse gear and a single dry starting clutch will be integrated. The electric motor of the hybrid is directly connected to the gear set of the transmission. Utilizing the special gear set layout, the electric motor can provide boost during a change of gears, so that there is no interruption in traction. Therefore, the transmission system combines the advantages of a double clutch controlled gear change (gear change without an interruption in traction) with the efficient, cost-effective design of an automated manual transmission system. Additionally, the transmission provides a purely electric drive system and the operation of an air-conditioning compressor during the engine stop phases. One other alternative is through the use of CAI (Controlled Auto Ignition), which incorporates a process developed by FEV for controlled compression ignition.}, language = {en} } @inproceedings{Wahle1983, author = {Wahle, Michael}, title = {Calculation of the response of heat exchanger tubes with regard to nonlinear and prestressing effects}, series = {Vibration in nuclear plant : proceedings of the 3rd International Conference on Vibration in Nuclear Plant held on 11 - 14 May 1982, Keswick ; vol. 1}, booktitle = {Vibration in nuclear plant : proceedings of the 3rd International Conference on Vibration in Nuclear Plant held on 11 - 14 May 1982, Keswick ; vol. 1}, publisher = {British Nuclear Energy Society}, address = {London}, isbn = {0-7277-0192-4 (Druckausg.)}, pages = {162 -- 183}, year = {1983}, language = {en} } @inproceedings{SchildtBraunMarcocca2017, author = {Schildt, P. and Braun, Carsten and Marcocca, P.}, title = {Flight testing the extra 330LE flying testbed}, series = {48th Annual International Symposium of the Society of Flight Test Engineers 2017}, booktitle = {48th Annual International Symposium of the Society of Flight Test Engineers 2017}, isbn = {978-151085387-4}, pages = {349 -- 362}, year = {2017}, language = {en} } @article{FunkeBeckmannKeinzetal.2016, author = {Funke, Harald and Beckmann, Nils and Keinz, Jan and Abanteriba, Sylvester}, title = {Comparison of Numerical Combustion Models for Hydrogen and Hydrogen-Rich Syngas Applied for Dry-Low-NOx-Micromix-Combustion}, series = {ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition Volume 4A: Combustion, Fuels and Emissions Seoul, South Korea, June 13-17, 2016}, journal = {ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition Volume 4A: Combustion, Fuels and Emissions Seoul, South Korea, June 13-17, 2016}, publisher = {ASME}, address = {New York, NY}, isbn = {978-0-7918-4975-0}, doi = {10.1115/GT2016-56430}, pages = {12}, year = {2016}, abstract = {The Dry-Low-NOₓ (DLN) Micromix combustion technology has been developed as low emission combustion principle for industrial gas turbines fueled with hydrogen or syngas. The combustion process is based on the phenomenon of jet-in-crossflow-mixing. Fuel is injected perpendicular into the air-cross-flow and burned in a multitude of miniaturized, diffusion-like flames. The miniaturization of the flames leads to a significant reduction of NOₓ emissions due to the very short residence time of reactants in the flame. In the Micromix research approach, CFD analyses are validated towards experimental results. The combination of numerical and experimental methods allows an efficient design and optimization of DLN Micromix combustors concerning combustion stability and low NOₓ emissions. The paper presents a comparison of several numerical combustion models for hydrogen and hydrogen-rich syngas. They differ in the complexity of the underlying reaction mechanism and the associated computational effort. For pure hydrogen combustion a one-step global reaction is applied using a hybrid Eddy-Break-up model that incorporates finite rate kinetics. The model is evaluated and compared to a detailed hydrogen combustion mechanism derived by Li et al. including 9 species and 19 reversible elementary reactions. Based on this mechanism, reduction of the computational effort is achieved by applying the Flamelet Generated Manifolds (FGM) method while the accuracy of the detailed reaction scheme is maintained. For hydrogen-rich syngas combustion (H₂-CO) numerical analyses based on a skeletal H₂/CO reaction mechanism derived by Hawkes et al. and a detailed reaction mechanism provided by Ranzi et al. are performed. The comparison between combustion models and the validation of numerical results is based on exhaust gas compositions available from experimental investigation on DLN Micromix combustors. The conducted evaluation confirms that the applied detailed combustion mechanisms are able to predict the general physics of the DLN-Micromix combustion process accurately. The Flamelet Generated Manifolds method proved to be generally suitable to reduce the computational effort while maintaining the accuracy of detailed chemistry. Especially for reaction mechanisms with a high number of species accuracy and computational effort can be balanced using the FGM model.}, language = {en} } @inproceedings{FingerGoettenBraunetal.2019, author = {Finger, Felix and G{\"o}tten, Falk and Braun, Carsten and Bil, C.}, title = {On Aircraft Design Under the Consideration of Hybrid-Electric Propulsion Systems}, series = {APISAT 2018: The Proceedings of the 2018 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2018)}, booktitle = {APISAT 2018: The Proceedings of the 2018 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2018)}, publisher = {Springer}, address = {Singapore}, isbn = {978-981-13-3305-7}, doi = {10.1007/978-981-13-3305-7_99}, pages = {1261 -- 1272}, year = {2019}, abstract = {A hybrid-electric propulsion system combines the advantages of fuel-based systems and battery powered systems and offers new design freedom. To take full advantage of this technology, aircraft designers must be aware of its key differences, compared to conventional, carbon-fuel based, propulsion systems. This paper gives an overview of the challenges and potential benefits associated with the design of aircraft that use hybrid-electric propulsion systems. It offers an introduction of the most popular hybrid-electric propulsion architectures and critically assess them against the conventional and fully electric propulsion configurations. The effects on operational aspects and design aspects are covered. Special consideration is given to the application of hybrid-electric propulsion technology to both unmanned and vertical take-off and landing aircraft. The authors conclude that electric propulsion technology has the potential to revolutionize aircraft design. However, new and innovative methods must be researched, to realize the full benefit of the technology.}, language = {en} } @phdthesis{Beckmann2019, author = {Beckmann, Nils}, title = {Characterization of the hydrogen-dry-low-Nox-micromix-combustion-principle for hydrogen-methane fuel mixtures}, publisher = {RMIT University}, address = {Melbourne}, pages = {XV, 160 Seiten}, year = {2019}, language = {en} } @incollection{BallmannBouckeBraun2003, author = {Ballmann, Josef and Boucke, Alexander and Braun, Carsten}, title = {Aeroelastic sensitivity in the transonic regime}, series = {Symposium Transsonicum IV : proceedings of the IUTAM symposium held in G{\"o}ttingen, Germany, 2 - 6 September 2002 / ed. by Helmut Sobieczky. Fluid mechanics and its applications. Vol. 73}, booktitle = {Symposium Transsonicum IV : proceedings of the IUTAM symposium held in G{\"o}ttingen, Germany, 2 - 6 September 2002 / ed. by Helmut Sobieczky. Fluid mechanics and its applications. Vol. 73}, publisher = {Kluwer Academic}, address = {Dordrecht}, isbn = {978-94-010-3998-7}, pages = {225 -- 236}, year = {2003}, language = {en} } @article{FingerBraunBil2020, author = {Finger, Felix and Braun, Carsten and Bil, Cees}, title = {Comparative assessment of parallel-hybrid-electric propulsion systems for four different aircraft}, series = {Journal of Aircraft}, volume = {57}, journal = {Journal of Aircraft}, number = {5}, publisher = {AIAA}, address = {Reston, Va.}, issn = {1533-3868}, doi = {10.2514/1.C035897}, year = {2020}, abstract = {Until electric energy storage systems are ready to allow fully electric aircraft, the combination of combustion engine and electric motor as a hybrid-electric propulsion system seems to be a promising intermediate solution. Consequently, the design space for future aircraft is expanded considerably, as serial hybrid-electric, parallel hybrid-electric, fully electric, and conventional propulsion systems must all be considered. While the best propulsion system depends on a multitude of requirements and considerations, trends can be observed for certain types of aircraft and certain types of missions. This Paper provides insight into some factors that drive a new design toward either conventional or hybrid propulsion systems. General aviation aircraft, regional transport aircraft vertical takeoff and landing air taxis, and unmanned aerial vehicles are chosen as case studies. Typical missions for each class are considered, and the aircraft are analyzed regarding their takeoff mass and primary energy consumption. For these case studies, a high-level approach is chosen, using an initial sizing methodology. Only parallel-hybrid-electric powertrains are taken into account. Aeropropulsive interaction effects are neglected. Results indicate that hybrid-electric propulsion systems should be considered if the propulsion system is sized by short-duration power constraints. However, if the propulsion system is sized by a continuous power requirement, hybrid-electric systems offer hardly any benefit.}, language = {en} } @inproceedings{LudowicyRingsFingeretal.2018, author = {Ludowicy, Jonas and Rings, Ren{\´e} and Finger, Felix and Braun, Carsten}, title = {Sizing Studies of Light Aircraft with Serial Hybrid Propulsion Systems}, series = {Luft- und Raumfahrt - Digitalisierung und Vernetzung : Deutscher Luft- und Raumfahrtkongress 2018. 4. - 6. September 2018 - Friedrichshafen}, booktitle = {Luft- und Raumfahrt - Digitalisierung und Vernetzung : Deutscher Luft- und Raumfahrtkongress 2018. 4. - 6. September 2018 - Friedrichshafen}, pages = {11 S.}, year = {2018}, language = {en} } @inproceedings{LudowicyRingsFingeretal.2018, author = {Ludowicy, Jonas and Rings, Ren{\´e} and Finger, Felix and Braun, Carsten}, title = {Sizing Studies of Light Aircraft with Parallel Hybrid Propulsion Systems}, series = {Deutscher Luft- und Raumfahrtkongress 2018}, booktitle = {Deutscher Luft- und Raumfahrtkongress 2018}, doi = {10.25967/480227}, pages = {15 S.}, year = {2018}, language = {en} } @phdthesis{Dahmann1992, author = {Dahmann, Peter}, title = {Untersuchungen zur Wirksamkeit von Filtern in hydraulischen Anlagen}, pages = {VI, 160 S. : Ill., graph. Darst.}, year = {1992}, language = {de} } @article{SaretzkiBergmannDahmannetal.2021, author = {Saretzki, Charlotte and Bergmann, Ole and Dahmann, Peter and Janser, Frank and Keimer, Jona and Machado, Patricia and Morrison, Audry and Page, Henry and Pluta, Emil and St{\"u}bing, Felix and K{\"u}pper, Thomas}, title = {Are small airplanes safe with regards to COVID-19 transmission?}, series = {Journal of Travel Medicine}, volume = {28}, journal = {Journal of Travel Medicine}, number = {7}, publisher = {Oxford University Press}, address = {Oxford}, issn = {1708-8305}, doi = {10.1093/jtm/taab105}, year = {2021}, language = {en} } @inproceedings{WeissAbanteribaEsch2007, author = {Weiss, Alexander and Abanteriba, Sylvester and Esch, Thomas}, title = {Investigation of Flow Separation Inside a Conical Rocket Nozzle With the Aid of an Annular Cross Flow}, series = {Proceedings of the ASME/JSME 2007 5th Joint Fluids Engineering Conference. Volume 1: Symposia, Parts A and B}, booktitle = {Proceedings of the ASME/JSME 2007 5th Joint Fluids Engineering Conference. Volume 1: Symposia, Parts A and B}, publisher = {American Society of Mechanical Engineers (ASME)}, address = {New York}, isbn = {0-7918-4288-6}, doi = {10.1115/FEDSM2007-37387}, pages = {1861 -- 1871}, year = {2007}, abstract = {Flow separation is a phenomenon that occurs in all kinds of supersonic nozzles sometimes during run-up and shut-down operations. Especially in expansion nozzles of rocket engines with large area ratio, flow separation can trigger strong side loads that can damage the structure of the nozzle. The investigation presented in this paper seeks to establish measures that may be applied to alter the point of flow separation. In order to achieve this, a supersonic nozzle was placed at the exit plane of the conical nozzle. This resulted in the generation of cross flow surrounding the core jet flow from the conical nozzle. Due to the entrainment of the gas stream from the conical nozzle the pressure in its exit plane was found to be lower than that of the ambient. A Cold gas instead of hot combustion gases was used as the working fluid. A mathematical simulation of the concept was validated by experiment. Measurements confirmed the simulation results that due to the introduction of a second nozzle the pressure in the separated region of the conical nozzle was significantly reduced. It was also established that the boundary layer separation inside the conical nozzle was delayed thus allowing an increased degree of overexpansion. The condition established by the pressure measurements was also demonstrated qualitatively using transparent nozzle configurations.}, language = {en} } @misc{GamgamiCzupallaGarciaetal.2016, author = {Gamgami, Farid and Czupalla, Markus and Garcia, Antonio and Agnolon, David}, title = {From planetary transits to spacecraft design: achieving PLATO's pointing performance}, series = {A7. Symposium on technological Requirement for future space astronomy and solar-system science missions}, journal = {A7. Symposium on technological Requirement for future space astronomy and solar-system science missions}, year = {2016}, abstract = {In the last decades, several hundred exoplanets could be detected thanks to space-based observatories, namely CNES' COROT and NASA's Kepler. To expand this quest ESA plans to launch CHEOPS as the f irst small class mission in the cosmic visions program (S1) and PLATO as the 3rd medium class mission, so called M3 . PLATO's primary objective is the detection of Earth like Exoplanets orbiting solar type stars in the habitable zone and characterisation of their bulk properties. This is possible by precise lightcurve measurement via 34 cameras. That said it becomes obvious that accurate pointing is key to achieve the required signal to noise ratio for positive transit detection. The paper will start with a comprehensive overview of PLATO's mission objectives and mission architecture. Hereafter, special focus will be devoted to PLATO's pointing requirements. Understanding the very nature of PLATO's pointing requirements is essential to derive a design baseline to achieve the required performance. The PLATO frequency domain is of particular interest, ranging from 40 mHz to 3 Hz. Due to the very different time-scales involved, the spectral pointing requirement is decomposed into a high frequency part dominated by the attitude control system and the low frequency part dominated by the thermo-elastic properties of the spacecraft's configuration. Both pose stringent constraints on the overall design as well as technology properties to comply with the derived requirements and thus assure a successful mission.}, language = {en} } @inproceedings{FunkeEschRoosen2009, author = {Funke, Harald and Esch, Thomas and Roosen, Peter}, title = {Using motor gasoline for aircrafts - coping with growing bio-fuel-caused risks by understanding cause-effect relationship}, series = {Fuels 2009 : mineral oil based and alternative fuels ; 7th international colloquium ; January 14 - 15, 2009}, booktitle = {Fuels 2009 : mineral oil based and alternative fuels ; 7th international colloquium ; January 14 - 15, 2009}, editor = {Bartz, Wilfried J.}, publisher = {Technische Akademie Esslingen (TAE)}, address = {Ostfildern}, isbn = {978-3-924813-75-8}, pages = {237 -- 244}, year = {2009}, abstract = {The utilisation of vehicle-oriented gasoline in general aviation is very desirable for both ecological and economical reasons, as well as for general considerations of availability. As of today vehicle fuels may be used if the respective engine and cell are certified for such an operation. For older planes a supplementary technical certificate is provided for gasoline mixtures with less than 1 \% v/v ethanol only, though. Larger admixtures of ethanol may lead to sudden engine malfunction and should be considered as considerable security risks. Major problems are caused by the partially ethanol non-withstanding materials, a necessarily changed stochiometric adjustment of the engine for varying ethanol shares and the tendency for phase separation in the presence of absorbed water. The concepts of the flexible fuel vehicles are only partially applicable in the view of air security.}, language = {en} } @book{OPUS4-8743, title = {Handbuch der Raumfahrttechnik}, editor = {Ley, Wilfried and Hallmann, Willi and Wittmann, Klaus}, edition = {5. Auflage}, publisher = {Hanser}, address = {M{\"u}nchen}, isbn = {978-3-446-45429-3}, pages = {934 Seiten}, year = {2019}, language = {de} } @article{FunkeEschRoosen2022, author = {Funke, Harald and Esch, Thomas and Roosen, Petra}, title = {Antriebssystemanpassungen zur Verwendung von LPG als Flugkraftstoff}, series = {Motortechnische Zeitschrift (MTZ)}, volume = {2022}, journal = {Motortechnische Zeitschrift (MTZ)}, number = {83}, publisher = {Springer Nature}, address = {Basel}, doi = {10.1007/s35146-021-0778-2}, pages = {58 -- 62}, year = {2022}, abstract = {Auch in der allgemeinen Luftfahrt w{\"a}re es w{\"u}nschenswert, die bereits vorhandenen Verbrennungsmotoren mit weniger CO₂-tr{\"a}chtigen Kraftstoffen als dem heute weit verbreiteten Avgas 100LL betreiben zu k{\"o}nnen. Es ist anzunehmen, dass im Vergleich die unter Normalbedingungen gasf{\"o}rmigen Kraftstoffe CNG, LPG oder LNG deutlich weniger Emissionen produzieren. Erforderliche Antriebssystemanpassungen wurden im Rahmen eines Forschungsprojekts an der FH Aachen untersucht.}, language = {de} } @incollection{RoethPielen2018, author = {R{\"o}th, Thilo and Pielen, Michael}, title = {Personal Public Vehicle - ein urbanes Fahrzeugkonzept f{\"u}r die „Shared Mobility" der Zukunft}, series = {Karosseriebautage Hamburg 2018, 16. ATZ-Fachtagung}, booktitle = {Karosseriebautage Hamburg 2018, 16. ATZ-Fachtagung}, publisher = {Springer Vieweg}, address = {Wiesbaden}, doi = {10.1007/978-3-658-22038-9_13}, pages = {189 -- 199}, year = {2018}, abstract = {Die urbane Mobilit{\"a}t ist im Wandel und insbesondere neue innovative Gesch{\"a}ftsmodelle werden einen wesentlichen Teil zur L{\"o}sung von k{\"u}nftigen Mobilit{\"a}tsbed{\"u}rfnissen beitragen. Die sogenannte „Shared Mobility" gilt aktuell neben der Elektrifizierung des Antriebes und autonomem Fahrzeugtechnologien als einer der wichtigsten Trendthemen in der Automobilindustrie. Neue Mobilit{\"a}tsdienstleistungen verlangen dabei verst{\"a}rkt auch neue Fahrzeugkonzepte.}, language = {de} } @inproceedings{FingerBraunBil2018, author = {Finger, Felix and Braun, Carsten and Bil, Cees}, title = {Case studies in initial sizing for hybrid-electric general aviation aircraft}, series = {2018 AIAA/IEEE Electric Aircraft Technologies Symposium, Cincinnati, Ohio}, booktitle = {2018 AIAA/IEEE Electric Aircraft Technologies Symposium, Cincinnati, Ohio}, doi = {10.2514/6.2018-5005}, year = {2018}, language = {en} } @inproceedings{SchopenShabaniEschetal.2022, author = {Schopen, Oliver and Shabani, Bahman and Esch, Thomas and Kemper, Hans and Shah, Neel}, title = {Quantitative evaluation of health management designs for fuel cell systems in transport vehicles}, series = {2nd UNITED-SAIG International Conference Proceedings}, booktitle = {2nd UNITED-SAIG International Conference Proceedings}, editor = {Rahim, S.A. and As'arry, A. and Zuhri, M.Y.M. and Harmin, M.Y. and Rezali, K.A.M. and Hairuddin, A.A.}, pages = {1 -- 3}, year = {2022}, abstract = {Focusing on transport vehicles, mainly with regard to aviation applications, this paper presents compilation and subsequent quantitative evaluation of methods aimed at building an optimum integrated health management solution for fuel cell systems. The methods are divided into two different main types and compiled in a related scheme. Furthermore, different methods are analysed and evaluated based on parameters specific to the aviation context of this study. Finally, the most suitable method for use in fuel cell health management systems is identified and its performance and suitability is quantified.}, language = {en} } @phdthesis{Rosenkranz1989, author = {Rosenkranz, Josef}, title = {Die Gleitlagergeh{\"a}usesteifigkeit als modaler Parameter f{\"u}r Rotorsysteme}, address = {Aachen}, pages = {VI, 145 S. : Ill., zahlr. graph. Darst.}, year = {1989}, language = {de} } @inproceedings{TamaldinEschTonolietal.2020, author = {Tamaldin, Noreffendy and Esch, Thomas and Tonoli, Andrea and Reisinger, Karl Heinz and Sprenger, Hanna and Razuli, Hisham}, title = {ERASMUS+ United CBHE Automotive International Collaboration from European to South East Asia}, series = {Proceedings of the 2nd African International Conference on Industrial Engineering and Operations Management}, booktitle = {Proceedings of the 2nd African International Conference on Industrial Engineering and Operations Management}, publisher = {IEOM Society International}, address = {Southfield}, isbn = {978-1-7923-6123-4}, issn = {2169-8767}, pages = {2970 -- 2972}, year = {2020}, abstract = {The industrial revolution especially in the IR4.0 era have driven many states of the art technologies to be introduced. The automotive industry as well as many other key industries have also been greatly influenced. The rapid development of automotive industries in Europe have created wide industry gap between European Union (EU) and developing countries such as in South East Asia (SEA). Indulging this situation, FH JOANNEUM, Austria together with European partners from FH Aachen, Germany and Politecnico di Torino, Italy are taking initiative to close down the gap utilizing the Erasmus+ United Capacity Building in Higher Education grant from EU. A consortium was founded to engage with automotive technology transfer using the European framework to Malaysian, Indonesian and Thailand Higher Education Institutions (HEI) as well as automotive industries in respective countries. This could be achieved by establishing Engineering Knowledge Transfer Unit (EKTU) in respective SEA institutions guided by the industry partners in their respective countries. This EKTU could offer updated, innovative and high-quality training courses to increase graduate's employability in higher education institutions and strengthen relations between HEI and the wider economic and social environment by addressing University-industry cooperation which is the regional priority for Asia. It is expected that, the Capacity Building Initiative would improve the quality of higher education and enhancing its relevance for the labor market and society in the SEA partners. The outcome of this project would greatly benefit the partners in strong and complementary partnership targeting the automotive industry and enhanced larger scale international cooperation between the European and SEA partners. It would also prepare the SEA HEI in sustainable partnership with Automotive industry in the region as a mean of income generation in the future.}, language = {en} } @article{FingerBraunBil2018, author = {Finger, Felix and Braun, Carsten and Bil, Cees}, title = {Impact of electric propulsion technology and mission requirements on the performance of VTOL UAVs}, series = {CEAS Aeronautical Journal}, volume = {10}, journal = {CEAS Aeronautical Journal}, number = {3}, publisher = {Springer}, issn = {1869-5582 print}, doi = {10.1007/s13272-018-0352-x}, pages = {843}, year = {2018}, abstract = {One of the engineering challenges in aviation is the design of transitioning vertical take-off and landing (VTOL) aircraft. Thrust-borne flight implies a higher mass fraction of the propulsion system, as well as much increased energy consumption in the take-off and landing phases. This mass increase is typically higher for aircraft with a separate lift propulsion system than for aircraft that use the cruise propulsion system to support a dedicated lift system. However, for a cost-benefit trade study, it is necessary to quantify the impact the VTOL requirement and propulsion configuration has on aircraft mass and size. For this reason, sizing studies are conducted. This paper explores the impact of considering a supplemental electric propulsion system for achieving hovering flight. Key variables in this study, apart from the lift system configuration, are the rotor disk loading and hover flight time, as well as the electrical systems technology level for both batteries and motors. Payload and endurance are typically used as the measures of merit for unmanned aircraft that carry electro-optical sensors, and therefore the analysis focuses on these particular parameters.}, language = {en} } @inproceedings{Blome2018, author = {Blome, Hans-Joachim}, title = {{\"U}ber die kulturelle Bedeutung der Raumfahrt}, series = {{\"U}berleben im Weltraum. Auf dem Weg zu neuen Grenzen. 21. Berliner Kolloquium der Daimler und Benz Stiftung 24. Mai 2017}, booktitle = {{\"U}berleben im Weltraum. Auf dem Weg zu neuen Grenzen. 21. Berliner Kolloquium der Daimler und Benz Stiftung 24. Mai 2017}, pages = {5 -- 5}, year = {2018}, language = {de} } @book{Wahle1994, author = {Wahle, Michael}, title = {Kinetik. - (Dynamik ; 2)}, edition = {1. Aufl.}, publisher = {Mainz}, address = {Aachen}, isbn = {3- 930085-94-1}, pages = {91 S. : graph. Darst.}, year = {1994}, language = {de} } @misc{Wahle1994, author = {Wahle, Michael}, title = {Stoßd{\"a}mpfer : Offenlegungschrift / Europ{\"a}ische Patentschrift}, publisher = {Deutsches Patent- und Markenamt / Europ{\"a}isches Patentamt}, address = {M{\"u}nchen / Den Hague}, pages = {7 S. : graph. Darst.}, year = {1994}, language = {de} } @incollection{BrandtGueskenBuechenetal.1997, author = {Brandt, D. and G{\"u}sken, J. and B{\"u}chen, W. and [u.a.], and Wahle, Michael}, title = {Konstruieren mit Aluminium [Kapitel 4]}, series = {Aluminium-Taschenbuch / Hrsg.: Aluminium-Zentrale D{\"u}sseldorf. - Bd. 3: Weiterverarbeitung und Anwendung}, booktitle = {Aluminium-Taschenbuch / Hrsg.: Aluminium-Zentrale D{\"u}sseldorf. - Bd. 3: Weiterverarbeitung und Anwendung}, edition = {15. Auflage}, publisher = {Aluminium-Verlag}, address = {D{\"u}sseldorf}, isbn = {3-87017-243-6}, pages = {359 -- 544}, year = {1997}, language = {de} } @misc{EickmannEschFunkeetal.2014, author = {Eickmann, Matthias and Esch, Thomas and Funke, Harald and Abanteriba, Sylvester and Roosen, Petra}, title = {Biofuels in Aviation - Safety Implications of Bio-Ethanol Usage in General Aviation Aircraft}, year = {2014}, abstract = {Up in the clouds and above fuels and construction materials must be very carefully selected to ensure a smooth flight and touchdown. Out of around 38,000 single and dual-engined propeller aeroplanes, roughly a third are affected by a new trend in the fuel sector that may lead to operating troubles or even emergency landings: The admixture of bio-ethanol to conventional gasoline. Experiences with these fuels may be projected to alternative mixtures containing new components.}, language = {en} } @misc{WahleFriedrich1996, author = {Wahle, Michael and Friedrich, Peter Ralph}, title = {Anordnung zur schwingungsisolierenden Lagerung von Massen oder elastischen Systemen : Offenlegungsschrift}, publisher = {Deutsches Patent- und Markenamt}, address = {M{\"u}nchen}, pages = {8 S. : graph. Darst.}, year = {1996}, language = {de} } @book{Wahle1993, author = {Wahle, Michael}, title = {Kinematik. - (Dynamik ; 1)}, edition = {1. Aufl.}, publisher = {Mainz}, address = {Aachen}, isbn = {3-930085-25-9}, pages = {72 S. : graph. Darst.}, year = {1993}, language = {de} } @inproceedings{Czupalla2017, author = {Czupalla, Markus}, title = {Pflanzen oder Maschinen - was l{\"a}ßt uns auf dem Mars {\"u}berleben?}, series = {{\"U}berleben im Weltraum. Auf dem Weg zu neuen Grenzen. 21. Berliner Kolloquium der Daimler und Benz Stiftung 24. Mai 2017}, booktitle = {{\"U}berleben im Weltraum. Auf dem Weg zu neuen Grenzen. 21. Berliner Kolloquium der Daimler und Benz Stiftung 24. Mai 2017}, pages = {12 -- 12}, year = {2017}, language = {de} } @misc{NonhoffWahle1990, author = {Nonhoff, Gottfried and Wahle, Michael}, title = {Anordnung zur D{\"a}mpfung von Schwingungen an Bauwerken und Bauteilen : Offenlegungsschrift / Europ{\"a}ische Patentschrift}, publisher = {Deutsches Patent- und Markenamt / Europ{\"a}isches Patentamt}, address = {M{\"u}nchen / Den Hague}, pages = {7 S. : graph. Darst.}, year = {1990}, language = {de} } @inproceedings{Rosenkranz1993, author = {Rosenkranz, Josef}, title = {Verbesserung der Laufruhe des Verbrennungsmotors durch abgestimmte qualit{\"a}tssteigernde Maßnahmen beim Auswuchten des Kurbeltriebs}, series = {Antriebstechnisches Kolloquium '93 / Industrieentwicklungen und Forschungsergebnisse f{\"u}r die Maschinen{\"u}berwachung und die Konstruktion in der Antriebstechnik. - (Reihe IME-Leitfaden)}, booktitle = {Antriebstechnisches Kolloquium '93 / Industrieentwicklungen und Forschungsergebnisse f{\"u}r die Maschinen{\"u}berwachung und die Konstruktion in der Antriebstechnik. - (Reihe IME-Leitfaden)}, publisher = {Verl. T{\"U}V Rheinland}, address = {K{\"o}ln}, isbn = {3-8249-0139-0}, pages = {176 -- 199}, year = {1993}, language = {de} } @incollection{DachwaldUlamecBiele2013, author = {Dachwald, Bernd and Ulamec, Stephan and Biele, Jens}, title = {Clean in situ subsurface exploration of icy environments in the solar system}, series = {Habitability of other planets and satellites. - (Cellular origin, life in extreme habitats and astrobiology ; 28)}, booktitle = {Habitability of other planets and satellites. - (Cellular origin, life in extreme habitats and astrobiology ; 28)}, publisher = {Springer}, address = {Dordrecht}, isbn = {978-94-007-6545-0 (Druckausgabe)}, pages = {367 -- 397}, year = {2013}, abstract = {"To assess the habitability of the icy environments in the solar system, for example, on Mars, Europa, and Enceladus, the scientific analysis of material embedded in or underneath their ice layers is very important. We consider self-steering robotic ice melting probes to be the best method to cleanly access these environments, that is, in compliance with planetary protection standards. The required technologies are currently developed and tested."}, language = {en} } @book{Wahle1999, author = {Wahle, Michael}, title = {Angewandte Strukturanalyse. - (Dynamik)}, publisher = {Mainz}, address = {Aachen}, isbn = {3-89653-567-6}, pages = {120, A41 S. : Ill., graph. Darst.}, year = {1999}, language = {de} } @misc{EcclestonDrummondMiddletonetal.2020, author = {Eccleston, Paul and Drummond, Rachel and Middleton, Kevin and Bishop, Georgia and Caldwell, Andrew and Desjonqueres, Lucile and Tosh, Ian and Cann, Nick and Crook, Martin and Hills, Matthew and Pearson, Chris and Simpson, Caroline and Stamper, Richard and Tinetti, Giovanna and Pascale, Enzo and Swain, Mark and Holmes, Warren A. and Wong, Andre and Puig, Ludovic and Pilbratt, G{\"o}ran and Linder, Martin and Boudin, Nathalie and Ertel, Hanno and Gambicorti, Lisa and Halain, Jean-Philippe and Pace, Emanuele and Vilardell, Francesc and G{\´o}mez, Jos{\´e} M. and Colom{\´e}, Josep and Amiaux, J{\´e}r{\^o}me and Cara, Christophe and Berthe, Michel and Moreau, Vincent and Morgante, Gianluca and Malaguti, Giuseppe and Alonso, Gustavo and {\´A}lvarez, Javier P. and Ollivier, Marc and Philippon, Anne and Hellin, Marie-Laure and Roose, Steve and Frericks, Martin and Krijger, Matthijs and Rataj, Miroslaw and Wawer, Piotr and Skup, Konrad and Sobiecki, Mateusz and Christian Jessen, Niels and M{\o}ller Pedersen, S{\o}ren and Hargrave, Peter and Griffin, Matt and Ottensamer, Roland and Hunt, Thomas and Rust, Duncan and Saleh, Aymen and Winter, Berend and Focardi, Mauro and Da Deppo, Vania and Zuppella, Paola and Czupalla, Markus}, title = {The ARIEL payload: A technical overview}, series = {Space Telescopes and Instrumentation 2020: Optical, Infrared, and Millimeter Wave}, volume = {11443}, journal = {Space Telescopes and Instrumentation 2020: Optical, Infrared, and Millimeter Wave}, editor = {Lystrup, Makenzie and Perrin, Marshall D. and Batalha, Natalie and Siegler, Nicholas and Tong, Edward C.}, publisher = {SPIE}, address = {Washington}, doi = {10.1117/12.2561478}, pages = {114430Z}, year = {2020}, abstract = {The Atmospheric Remote-Sensing Infrared Exoplanet Large-survey, ARIEL, has been selected to be the next (M4) medium class space mission in the ESA Cosmic Vision programme. From launch in 2028, and during the following 4 years of operation, ARIEL will perform precise spectroscopy of the atmospheres of ~1000 known transiting exoplanets using its metre-class telescope. A three-band photometer and three spectrometers cover the 0.5 µm to 7.8 µm region of the electromagnetic spectrum. This paper gives an overview of the mission payload, including the telescope assembly, the FGS (Fine Guidance System) - which provides both pointing information to the spacecraft and scientific photometry and low-resolution spectrometer data, the ARIEL InfraRed Spectrometer (AIRS), and other payload infrastructure such as the warm electronics, structures and cryogenic cooling systems.}, language = {en} } @misc{ReiswichBrandtCzupalla2019, author = {Reiswich, Martin and Brandt, Hannes and Czupalla, Markus}, title = {Passive thermal control by integration of phase change material into additively manufactured structures}, series = {E2. 47th Student conference}, journal = {E2. 47th Student conference}, year = {2019}, abstract = {Optical Instruments require an extremely stable thermal surrounding to prevent loss of data quality by misalignments of the instrument components resulting from material deformation due to temperature f luctuations (e.g. from solar intrusion). Phase Change Material (PCM) can be applied as a thermal damper to achieve a more uniform temperature distribution. The challenge of this method is, among others, the integration of PCM into affected areas. If correctly designed, incoming heat is latently absorbed during phase change of the PCM, i.e. the temperature of a structure remains almost constant. In a cold phase, the heat during phase change is released again latently until the PCM returns to its original state of aggregation. Thus, the structure is thermally stabilized. At FH Aachen- University of Applied Sciences research is conducted to apply PCM directly into the structures of affected components (baffles, optical benches, electronic boxes, etc.). Through the application of Additive Manufacturing, the necessary voids are directly printed into these structures and filled later with PCM. Additive Manufacturing enables complex structures that would not have been possible with conservative manufacturing methods. A corresponding Breadboard was developed and manufactured by Selective Laser Melting (SLM). The current state of research includes the handling and analysis of the Breadboard, tests and a correlation of the thermal model. The results have shown analytically and practically that it is possible to use PCM as an integral part of the structure as a thermal damper. The results serve as a basis for the further development of the technology, which should maximize performance and enable the integration of PCM into much more complex structures.}, language = {en} }