@article{BaaderBoxbergChenetal.2023, author = {Baader, Fabian and Boxberg, Marc S. and Chen, Qian and F{\"o}rstner, Roger and Kowalski, Julia and Dachwald, Bernd}, title = {Field-test performance of an ice-melting probe in a terrestrial analogue environment}, series = {Icarus}, journal = {Icarus}, number = {409}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.icarus.2023.115852}, pages = {Artikel 115852}, year = {2023}, abstract = {Melting probes are a proven tool for the exploration of thick ice layers and clean sampling of subglacial water on Earth. Their compact size and ease of operation also make them a key technology for the future exploration of icy moons in our Solar System, most prominently Europa and Enceladus. For both mission planning and hardware engineering, metrics such as efficiency and expected performance in terms of achievable speed, power requirements, and necessary heating power have to be known. Theoretical studies aim at describing thermal losses on the one hand, while laboratory experiments and field tests allow an empirical investigation of the true performance on the other hand. To investigate the practical value of a performance model for the operational performance in extraterrestrial environments, we first contrast measured data from terrestrial field tests on temperate and polythermal glaciers with results from basic heat loss models and a melt trajectory model. For this purpose, we propose conventions for the determination of two different efficiencies that can be applied to both measured data and models. One definition of efficiency is related to the melting head only, while the other definition considers the melting probe as a whole. We also present methods to combine several sources of heat loss for probes with a circular cross-section, and to translate the geometry of probes with a non-circular cross-section to analyse them in the same way. The models were selected in a way that minimizes the need to make assumptions about unknown parameters of the probe or the ice environment. The results indicate that currently used models do not yet reliably reproduce the performance of a probe under realistic conditions. Melting velocities and efficiencies are constantly overestimated by 15 to 50 \% in the models, but qualitatively agree with the field test data. Hence, losses are observed, that are not yet covered and quantified by the available loss models. We find that the deviation increases with decreasing ice temperature. We suspect that this mismatch is mainly due to the too restrictive idealization of the probe model and the fact that the probe was not operated in an efficiency-optimized manner during the field tests. With respect to space mission engineering, we find that performance and efficiency models must be used with caution in unknown ice environments, as various ice parameters have a significant effect on the melting process. Some of these are difficult to estimate from afar.}, language = {en} } @misc{FeldmannFranckeEspeetal.2022, author = {Feldmann, Marco and Francke, Gero and Espe, Clemes and Chen, Qian and Baader, Fabian and Boxberg, Marc S. and Sustrate, Anna-Marie and Kowalski, Julia and Dachwald, Bernd}, title = {Performance data of an ice-melting probe from field tests in two different ice environments}, doi = {10.5281/zenodo.6094866}, year = {2022}, abstract = {This dataset was acquired at field tests of the steerable ice-melting probe "EnEx-IceMole" (Dachwald et al., 2014). A field test in summer 2014 was used to test the melting probe's system, before the probe was shipped to Antarctica, where, in international cooperation with the MIDGE project, the objective of a sampling mission in the southern hemisphere summer 2014/2015 was to return a clean englacial sample from the subglacial brine reservoir supplying the Blood Falls at Taylor Glacier (Badgeley et al., 2017, German et al., 2021). The standardized log-files generated by the IceMole during melting operation include more than 100 operational parameters, housekeeping information, and error states, which are reported to the base station in intervals of 4 s. Occasional packet loss in data transmission resulted in a sparse number of increased sampling intervals, which where compensated for by linear interpolation during post processing. The presented dataset is based on a subset of this data: The penetration distance is calculated based on the ice screw drive encoder signal, providing the rate of rotation, and the screw's thread pitch. The melting speed is calculated from the same data, assuming the rate of rotation to be constant over one sampling interval. The contact force is calculated from the longitudinal screw force, which es measured by strain gauges. The used heating power is calculated from binary states of all heating elements, which can only be either switched on or off. Temperatures are measured at each heating element and averaged for three zones (melting head, side-wall heaters and back-plate heaters).}, language = {en} } @article{FunkeBeckmann2022, author = {Funke, Harald and Beckmann, Nils}, title = {Flexible fuel operation of a Dry-Low-NOx Micromix Combustor with Variable Hydrogen Methane Mixture}, series = {International Journal of Gas Turbine, Propulsion and Power Systems}, volume = {13}, journal = {International Journal of Gas Turbine, Propulsion and Power Systems}, number = {2}, issn = {1882-5079}, pages = {1 -- 7}, year = {2022}, abstract = {The role of hydrogen (H2) as a carbon-free energy carrier is discussed since decades for reducing greenhouse gas emissions. As bridge technology towards a hydrogen-based energy supply, fuel mixtures of natural gas or methane (CH4) and hydrogen are possible. The paper presents the first test results of a low-emission Micromix combustor designed for flexible-fuel operation with variable H2/CH4 mixtures. The numerical and experimental approach for considering variable fuel mixtures instead of recently investigated pure hydrogen is described. In the experimental studies, a first generation FuelFlex Micromix combustor geometry is tested at atmospheric pressure at gas turbine operating conditions corresponding to part- and full-load. The H2/CH4 fuel mixture composition is varied between 57 and 100 vol.\% hydrogen content. Despite the challenges flexible-fuel operation poses onto the design of a combustion system, the evaluated FuelFlex Micromix prototype shows a significant low NOx performance}, language = {en} } @article{HammerQuitterMayntzetal.2023, author = {Hammer, Thorben and Quitter, Julius and Mayntz, Joscha and Bauschat, J.-Michael and Dahmann, Peter and G{\"o}tten, Falk and Hille, Sebastian and Stumpf, Eike}, title = {Free fall drag estimation of small-scale multirotor unmanned aircraft systems using computational fluid dynamics and wind tunnel experiments}, series = {CEAS Aeronautical Journal}, journal = {CEAS Aeronautical Journal}, publisher = {Springer}, address = {Wien}, issn = {1869-5590 (Online)}, doi = {10.1007/s13272-023-00702-w}, pages = {14 Seiten}, year = {2023}, abstract = {New European Union (EU) regulations for UAS operations require an operational risk analysis, which includes an estimation of the potential danger of the UAS crashing. A key parameter for the potential ground risk is the kinetic impact energy of the UAS. The kinetic energy depends on the impact velocity of the UAS and, therefore, on the aerodynamic drag and the weight during free fall. Hence, estimating the impact energy of a UAS requires an accurate drag estimation of the UAS in that state. The paper at hand presents the aerodynamic drag estimation of small-scale multirotor UAS. Multirotor UAS of various sizes and configurations were analysed with a fully unsteady Reynolds-averaged Navier-Stokes approach. These simulations included different velocities and various fuselage pitch angles of the UAS. The results were compared against force measurements performed in a subsonic wind tunnel and provided good consistency. Furthermore, the influence of the UAS`s fuselage pitch angle as well as the influence of fixed and free spinning propellers on the aerodynamic drag was analysed. Free spinning propellers may increase the drag by up to 110\%, depending on the fuselage pitch angle. Increasing the fuselage pitch angle of the UAS lowers the drag by 40\% up to 85\%, depending on the UAS. The data presented in this paper allow for increased accuracy of ground risk assessments.}, language = {en} } @article{KochBoehnischVerdoncketal.2024, author = {Koch, Christopher and B{\"o}hnisch, Nils and Verdonck, Hendrik and Hach, Oliver and Braun, Carsten}, title = {Comparison of unsteady low- and mid-fidelity propeller aerodynamic methods for whirl flutter applications}, series = {Applied Sciences}, volume = {14}, journal = {Applied Sciences}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2076-3417}, doi = {10.3390/app14020850}, pages = {1 -- 28}, year = {2024}, abstract = {Aircraft configurations with propellers have been drawing more attention in recent times, partly due to new propulsion concepts based on hydrogen fuel cells and electric motors. These configurations are prone to whirl flutter, which is an aeroelastic instability affecting airframes with elastically supported propellers. It commonly needs to be mitigated already during the design phase of such configurations, requiring, among other things, unsteady aerodynamic transfer functions for the propeller. However, no comprehensive assessment of unsteady propeller aerodynamics for aeroelastic analysis is available in the literature. This paper provides a detailed comparison of nine different low- to mid-fidelity aerodynamic methods, demonstrating their impact on linear, unsteady aerodynamics, as well as whirl flutter stability prediction. Quasi-steady and unsteady methods for blade lift with or without coupling to blade element momentum theory are evaluated and compared to mid-fidelity potential flow solvers (UPM and DUST) and classical, derivative-based methods. Time-domain identification of frequency-domain transfer functions for the unsteady propeller hub loads is used to compare the different methods. Predictions of the minimum required pylon stiffness for stability show good agreement among the mid-fidelity methods. The differences in the stability predictions for the low-fidelity methods are higher. Most methods studied yield a more unstable system than classical, derivative-based whirl flutter analysis, indicating that the use of more sophisticated aerodynamic modeling techniques might be required for accurate whirl flutter prediction.}, language = {en} } @inproceedings{FunkeBeckmannStefanetal.2023, author = {Funke, Harald and Beckmann, Nils and Stefan, Lukas and Keinz, Jan}, title = {Hydrogen combustor integration study for a medium range aircraft engine using the dry-low NOx "Micromix" combustion principle}, series = {Proceedings of the ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition. Volume 1: Aircraft Engine.}, booktitle = {Proceedings of the ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition. Volume 1: Aircraft Engine.}, publisher = {ASME}, address = {New York}, isbn = {978-0-7918-8693-9}, doi = {10.1115/GT2023-102370}, pages = {12 Seiten}, year = {2023}, abstract = {The feasibility study presents results of a hydrogen combustor integration for a Medium-Range aircraft engine using the Dry-Low-NOₓ Micromix combustion principle. Based on a simplified Airbus A320-type flight mission, a thermodynamic performance model of a kerosene and a hydrogen-powered V2530-A5 engine is used to derive the thermodynamic combustor boundary conditions. A new combustor design using the Dry-Low NOx Micromix principle is investigated by slice model CFD simulations of a single Micromix injector for design and off-design operation of the engine. Combustion characteristics show typical Micromix flame shapes and good combustion efficiencies for all flight mission operating points. Nitric oxide emissions are significant below ICAO CAEP/8 limits. For comparison of the Emission Index (EI) for NOₓ emissions between kerosene and hydrogen operation, an energy (kerosene) equivalent Emission Index is used. A full 15° sector model CFD simulation of the combustion chamber with multiple Micromix injectors including inflow homogenization and dilution and cooling air flows investigates the combustor integration effects, resulting NOₓ emission and radial temperature distributions at the combustor outlet. The results show that the integration of a Micromix hydrogen combustor in actual aircraft engines is feasible and offers, besides CO₂ free combustion, a significant reduction of NOₓ emissions compared to kerosene operation.}, language = {en} } @inproceedings{GehlerOberBloebaumDachwald2009, author = {Gehler, M. and Ober-Bl{\"o}baum, S. and Dachwald, Bernd}, title = {Application of discrete mechanics and optimal control to spacecraft in non-keplerian motion around small solar system bodies}, series = {Procceedings of the 60th International Astronautical Congress}, booktitle = {Procceedings of the 60th International Astronautical Congress}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {978-161567908-9}, pages = {1360 -- 1371}, year = {2009}, abstract = {Prolonged operations close to small solar system bodies require a sophisticated control logic to minimize propellant mass and maximize operational efficiency. A control logic based on Discrete Mechanics and Optimal Control (DMOC) is proposed and applied to both conventionally propelled and solar sail spacecraft operating at an arbitrarily shaped asteroid in the class of Itokawa. As an example, stand-off inertial hovering is considered, recently identified as a challenging part of the Marco Polo mission. The approach is easily extended to stand-off orbits. We show that DMOC is applicable to spacecraft control at small objects, in particular with regard to the fact that the changes in gravity are exploited by the algorithm to optimally control the spacecraft position. Furthermore, we provide some remarks on promising developments.}, language = {en} } @inproceedings{DachwaldWurm2009, author = {Dachwald, Bernd and Wurm, P.}, title = {Design concept and modeling of an advanced solar photon thruster}, series = {Advances in the Astronautical Sciences}, booktitle = {Advances in the Astronautical Sciences}, publisher = {American Astronautical Society}, address = {San Diego, Calif.}, isbn = {978-087703554-1}, issn = {00653438}, pages = {723 -- 740}, year = {2009}, abstract = {The so-called "compound solar sail", also known as "Solar Photon Thruster" (SPT), holds the potential of providing significant performance advantages over the flat solar sail. Previous SPT design concepts, however, do not consider shadowing effects and multiple reflections of highly concentrated solar radiation that would inevitably destroy the gossamer sail film. In this paper, we propose a novel advanced SPT (ASPT) design concept that does not suffer from these oversimplifications. We present the equations that describe the thrust force acting on such a sail system and compare its performance with respect to the conventional flat solar sail.}, language = {en} } @incollection{Dachwald2017, author = {Dachwald, Bernd}, title = {Light propulsion systems for spacecraft}, series = {Optical nano and micro actuator technology}, booktitle = {Optical nano and micro actuator technology}, editor = {Knopf, George K. and Otani, Yukitoshi}, publisher = {CRC Press}, address = {Boca Raton}, isbn = {9781315217628 (eBook)}, pages = {577 -- 598}, year = {2017}, language = {en} } @inproceedings{DachwaldWurm2009, author = {Dachwald, Bernd and Wurm, P.}, title = {Mission analysis for an advanced solar photon thruster}, series = {60th International Astronautical Congress 2009, IAC 2009}, volume = {8}, booktitle = {60th International Astronautical Congress 2009, IAC 2009}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {978-161567908-9}, pages = {6838 -- 6851}, year = {2009}, abstract = {The so-called "compound solar sail", also known as "Solar Photon Thruster" (SPT), is a solar sail design concept, for which the two basic functions of the solar sail, namely light collection and thrust direction, are uncoupled. In this paper, we introduce a novel SPT concept, termed the Advanced Solar Photon Thruster (ASPT). This model does not suffer from the simplified assumptions that have been made for the analysis of compound solar sails in previous studies. We present the equations that describe the force, which acts on the ASPT. After a detailed design analysis, the performance of the ASPT with respect to the conventional flat solar sail (FSS) is investigated for three interplanetary mission scenarios: An Earth-Venus rendezvous, where the solar sail has to spiral towards the Sun, an Earth-Mars rendezvous, where the solar sail has to spiral away from the Sun, and an Earth-NEA rendezvous (to near-Earth asteroid 1996FG3), where a large orbital eccentricity change is required. The investigated solar sails have realistic near-term characteristic accelerations between 0.1 and 0.2mm/s2. Our results show that a SPT is not superior to the flat solar sail unless very idealistic assumptions are made.}, language = {en} } @article{BoehnischBraunMuscarelloetal.2024, author = {B{\"o}hnisch, Nils and Braun, Carsten and Muscarello, Vincenzo and Marzocca, Pier}, title = {About the wing and whirl flutter of a slender wing-propeller system}, series = {Journal of Aircraft}, journal = {Journal of Aircraft}, publisher = {AIAA}, address = {Reston, Va.}, issn = {1533-3868}, doi = {10.2514/1.C037542}, pages = {1 -- 14}, year = {2024}, abstract = {Next-generation aircraft designs often incorporate multiple large propellers attached along the wingspan (distributed electric propulsion), leading to highly flexible dynamic systems that can exhibit aeroelastic instabilities. This paper introduces a validated methodology to investigate the aeroelastic instabilities of wing-propeller systems and to understand the dynamic mechanism leading to wing and whirl flutter and transition from one to the other. Factors such as nacelle positions along the wing span and chord and its propulsion system mounting stiffness are considered. Additionally, preliminary design guidelines are proposed for flutter-free wing-propeller systems applicable to novel aircraft designs. The study demonstrates how the critical speed of the wing-propeller systems is influenced by the mounting stiffness and propeller position. Weak mounting stiffnesses result in whirl flutter, while hard mounting stiffnesses lead to wing flutter. For the latter, the position of the propeller along the wing span may change the wing mode shapes and thus the flutter mechanism. Propeller positions closer to the wing tip enhance stability, but pusher configurations are more critical due to the mass distribution behind the elastic axis.}, language = {en} } @article{StiemerThomaBraun2023, author = {Stiemer, Luc Nicolas and Thoma, Andreas and Braun, Carsten}, title = {MBT3D: Deep learning based multi-object tracker for bumblebee 3D flight path estimation}, series = {PLoS ONE}, volume = {18}, journal = {PLoS ONE}, number = {9}, publisher = {PLOS}, address = {San Fancisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0291415}, pages = {e0291415}, year = {2023}, abstract = {This work presents the Multi-Bees-Tracker (MBT3D) algorithm, a Python framework implementing a deep association tracker for Tracking-By-Detection, to address the challenging task of tracking flight paths of bumblebees in a social group. While tracking algorithms for bumblebees exist, they often come with intensive restrictions, such as the need for sufficient lighting, high contrast between the animal and background, absence of occlusion, significant user input, etc. Tracking flight paths of bumblebees in a social group is challenging. They suddenly adjust movements and change their appearance during different wing beat states while exhibiting significant similarities in their individual appearance. The MBT3D tracker, developed in this research, is an adaptation of an existing ant tracking algorithm for bumblebee tracking. It incorporates an offline trained appearance descriptor along with a Kalman Filter for appearance and motion matching. Different detector architectures for upstream detections (You Only Look Once (YOLOv5), Faster Region Proposal Convolutional Neural Network (Faster R-CNN), and RetinaNet) are investigated in a comparative study to optimize performance. The detection models were trained on a dataset containing 11359 labeled bumblebee images. YOLOv5 reaches an Average Precision of AP = 53, 8\%, Faster R-CNN achieves AP = 45, 3\% and RetinaNet AP = 38, 4\% on the bumblebee validation dataset, which consists of 1323 labeled bumblebee images. The tracker's appearance model is trained on 144 samples. The tracker (with Faster R-CNN detections) reaches a Multiple Object Tracking Accuracy MOTA = 93, 5\% and a Multiple Object Tracking Precision MOTP = 75, 6\% on a validation dataset containing 2000 images, competing with state-of-the-art computer vision methods. The framework allows reliable tracking of different bumblebees in the same video stream with rarely occurring identity switches (IDS). MBT3D has much lower IDS than other commonly used algorithms, with one of the lowest false positive rates, competing with state-of-the-art animal tracking algorithms. The developed framework reconstructs the 3-dimensional (3D) flight paths of the bumblebees by triangulation. It also handles and compares two alternative stereo camera pairs if desired.}, language = {en} } @article{MoehrenBergmannJanseretal.2024, author = {M{\"o}hren, Felix and Bergmann, Ole and Janser, Frank and Braun, Carsten}, title = {Assessment of structural mechanical effects related to torsional deformations of propellers}, series = {CEAS Aeronautical Journal}, journal = {CEAS Aeronautical Journal}, publisher = {Springer}, address = {Wien}, issn = {1869-5590 (eISSN)}, doi = {10.1007/s13272-024-00737-7}, pages = {22 Seiten}, year = {2024}, abstract = {Lifting propellers are of increasing interest for Advanced Air Mobility. All propellers and rotors are initially twisted beams, showing significant extension-twist coupling and centrifugal twisting. Torsional deformations severely impact aerodynamic performance. This paper presents a novel approach to assess different reasons for torsional deformations. A reduced-order model runs large parameter sweeps with algebraic formulations and numerical solution procedures. Generic beams represent three different propeller types for General Aviation, Commercial Aviation, and Advanced Air Mobility. Simulations include solid and hollow cross-sections made of aluminum, steel, and carbon fiber-reinforced polymer. The investigation shows that centrifugal twisting moments depend on both the elastic and initial twist. The determination of the centrifugal twisting moment solely based on the initial twist suffers from errors exceeding 5\% in some cases. The nonlinear parts of the torsional rigidity do not significantly impact the overall torsional rigidity for the investigated propeller types. The extension-twist coupling related to the initial and elastic twist in combination with tension forces significantly impacts the net cross-sectional torsional loads. While the increase in torsional stiffness due to initial twist contributes to the overall stiffness for General and Commercial Aviation propellers, its contribution to the lift propeller's stiffness is limited. The paper closes with the presentation of approximations for each effect identified as significant. Numerical evaluations are necessary to determine each effect for inhomogeneous cross-sections made of anisotropic material.}, language = {en} } @article{ThomaGardiFisheretal.2024, author = {Thoma, Andreas and Gardi, Alessandro and Fisher, Alex and Braun, Carsten}, title = {Improving local path planning for UAV flight in challenging environments by refining cost function weights}, series = {CEAS Aeronautical Journal}, journal = {CEAS Aeronautical Journal}, publisher = {Springer}, address = {Wien}, issn = {1869-5590 (eISSN)}, doi = {10.1007/s13272-024-00741-x}, pages = {12 Seiten}, year = {2024}, abstract = {Unmanned Aerial Vehicles (UAV) constantly gain in versatility. However, more reliable path planning algorithms are required until full autonomous UAV operation is possible. This work investigates the algorithm 3DVFH* and analyses its dependency on its cost function weights in 2400 environments. The analysis shows that the 3DVFH* can find a suitable path in every environment. However, a particular type of environment requires a specific choice of cost function weights. For minimal failure, probability interdependencies between the weights of the cost function have to be considered. This dependency reduces the number of control parameters and simplifies the usage of the 3DVFH*. Weights for costs associated with vertical evasion (pitch cost) and vicinity to obstacles (obstacle cost) have the highest influence on the failure probability of the local path planner. Environments with mainly very tall buildings (like large American city centres) require a preference for horizontal avoidance manoeuvres (achieved with high pitch cost weights). In contrast, environments with medium-to-low buildings (like European city centres) benefit from vertical avoidance manoeuvres (achieved with low pitch cost weights). The cost of the vicinity to obstacles also plays an essential role and must be chosen adequately for the environment. Choosing these two weights ideal is sufficient to reduce the failure probability below 10\%.}, language = {en} } @techreport{BarnatArntzBerneckeretal.2024, type = {Working Paper}, author = {Barnat, Miriam and Arntz, Kristian and Bernecker, Andreas and Fissabre, Anke and Franken, Norbert and Goldbach, Daniel and H{\"u}ning, Felix and J{\"o}rissen, J{\"o}rg and Kirsch, Ansgar and Pettrak, J{\"u}rgen and Rexforth, Matthias and Josef, Rosenkranz and Terstegge, Andreas}, title = {Strategische Gestaltung von Studieng{\"a}ngen f{\"u}r die Zukunft: Ein kollaborativ entwickeltes Self-Assessment}, series = {Hochschulforum Digitalisierung - Diskussionspapier}, journal = {Hochschulforum Digitalisierung - Diskussionspapier}, publisher = {Stifterverband f{\"u}r die Deutsche Wissenschaft}, address = {Berlin}, issn = {2365-7081}, pages = {16 Seiten}, year = {2024}, abstract = {Das Diskussionspapier beschreibt einen Prozess an der FH Aachen zur Entwicklung und Implementierung eines Self-Assessment-Tools f{\"u}r Studieng{\"a}nge. Dieser Prozess zielte darauf ab, die Relevanz der Themen Digitalisierung, Internationalisierung und Nachhaltigkeit in Studieng{\"a}ngen zu st{\"a}rken. Durch Workshops und kollaborative Entwicklung mit Studiendekan:innen entstand ein Fragebogen, der zur Reflexion und strategischen Weiterentwicklung der Studieng{\"a}nge dient.}, language = {de} } @inproceedings{MulsowHuelsenGuetzlaffetal.2023, author = {Mulsow, Niklas A. and H{\"u}lsen, Benjamin and G{\"u}tzlaff, Joel and Spies, Leon and Bresser, Andreas and Dabrowski, Adam and Czupalla, Markus and Kirchner, Frank}, title = {Concept and design of an autonomous micro rover for long term lunar exploration}, series = {Proceedings of the 74th International Astronautical Congress}, booktitle = {Proceedings of the 74th International Astronautical Congress}, publisher = {dfki}, address = {Saarbr{\"u}cken}, pages = {13 Seiten}, year = {2023}, abstract = {Research on robotic lunar exploration has seen a broad revival, especially since the Google Lunar X-Prize increasingly brought private endeavors into play. This development is supported by national agencies with the aim of enabling long-term lunar infrastructure for in-situ operations and the establishment of a moon village. One challenge for effective exploration missions is developing a compact and lightweight robotic rover to reduce launch costs and open the possibility for secondary payload options. Existing micro rovers for exploration missions are clearly limited by their design for one day of sunlight and their low level of autonomy. For expanding the potential mission applications and range of use, an extension of lifetime could be reached by surviving the lunar night and providing a higher level of autonomy. To address this objective, the paper presents a system design concept for a lightweight micro rover with long-term mission duration capabilities, derived from a multi-day lunar mission scenario at equatorial regions. Technical solution approaches are described, analyzed, and evaluated, with emphasis put on the harmonization of hardware selection due to a strictly limited budget in dimensions and power.}, language = {en} } @inproceedings{HuelsenMulsowDabrowskietal.2023, author = {H{\"u}lsen, Benjamin and Mulsow, Niklas A. and Dabrowski, Adam and Brinkmann, Wiebke and G{\"u}tzlaff, Joel and Spies, Leon and Czupalla, Markus and Kirchner, Frank}, title = {Towards an autonomous micro rover with night survivability for lunar exploration}, series = {Proceedings of the 74th International Astronautical Congress}, booktitle = {Proceedings of the 74th International Astronautical Congress}, publisher = {dfki}, pages = {12 Seiten}, year = {2023}, abstract = {In Europe, efforts are underway to develop key technologies that can be used to explore the Moon and to exploit the resources available. This includes technologies for in-situ resource utilization (ISRU), facilitating the possibility of a future Moon Village. The Moon is the next step for humans and robots to exploit the use of available resources for longer term missions, but also for further exploration of the solar system. A challenge for effective exploration missions is to achieve a compact and lightweight robot to reduce launch costs and open up the possibility of secondary payload options. Current micro rover concepts are primarily designed to last for one day of solar illumination and show a low level of autonomy. Extending the lifetime of the system by enabling survival of the lunar night and implementing a high level of autonomy will significantly increase potential mission applications and the operational range. As a reference mission, the deployment of a micro rover in the equatorial region of the Moon is being considered. An overview of mission parameters and a detailed example mission sequence is given in this paper. The mission parameters are based on an in-depth study of current space agency roadmaps, scientific goals, and upcoming flight opportunities. Furthermore, concepts of the ongoing international micro rover developments are analyzed along with technology solutions identified for survival of lunar nights and a high system autonomy. The results provide a basis of a concise requirements set-up to allow dedicated system developments and qualification measures in the future.}, language = {en} } @inproceedings{WildCzupallaFoerstner2021, author = {Wild, Dominik and Czupalla, Markus and F{\"o}rstner, Roger}, title = {Modeling, prediction and test of additive manufactured integral structures with embedded lattice and phase change material applying Infused Thermal Solutions (ITS)}, series = {ICES104: Advances in Thermal Control Technology}, booktitle = {ICES104: Advances in Thermal Control Technology}, publisher = {Texas Tech University}, address = {Lubbock, Tex.}, pages = {12 Seiten}, year = {2021}, abstract = {Infused Thermal Solutions (ITS) introduces a method for passive thermal control to stabilize structural components thermally without active heating and cooling systems, but with phase change material (PCM) for thermal energy storage (TES), in combination with lattice - both embedded in additive manufactured functional structures. In this ITS follow-on paper a thermal model approach and associated predictions are presented, related on the ITS functional breadboards developed at FH Aachen. Predictive TES by PCM is provided by a specially developed ITS PCM subroutine, which is applicable in ESATAN. The subroutine is based on the latent heat storage (LHS) method to numerically embed thermo-physical PCM behavior. Furthermore, a modeling approach is introduced to numerically consider the virtual PCM/lattice nodes within the macro-encapsulated PCM voids of the double wall ITS design. Related on these virtual nodes, in-plane and out-of-plane conductive links are defined. The recent additive manufactured ITS breadboard series are thermally cycled in the thermal vacuum chamber, both with and without embedded PCM. Related on breadboard hardware tests, measurement results are compared with predictions and are subsequently correlated. The results of specific simulations and measurements are presented. Recent predictive results of star tracker analyses are also presented in ICES-2021-106, based on this ITS PCM subroutine.}, language = {en} } @inproceedings{KohlbergerWildKasperetal.2021, author = {Kohlberger, David-Sharif and Wild, Dominik and Kasper, Stefan and Czupalla, Markus}, title = {Modeling and analyses of a thermal passively stabilized LEO/GEO star tracker with embedded phase change material applying the Infused Thermal Solutions (ITS) method}, series = {ICES202: Satellite, Payload, and Instrument Thermal Control}, booktitle = {ICES202: Satellite, Payload, and Instrument Thermal Control}, publisher = {Texas Tech University}, address = {Lubbock, Tex.}, pages = {12 Seiten}, year = {2021}, abstract = {Phase change materials offer a way of storing excess heat and releasing it when it is needed. They can be utilized as a method to control thermal behavior without the need for additional energy. This work focuses on exploring the potential of using phase change materials to passively control the thermal behavior of a star tracker by infusing it with a fitting phase change material. Based on the numerical model of the star trackers thermal behavior using ESATAN-TMS without implemented phase change material, a fitting phase change material for selected orbits is chosen and implemented in the thermal model. The altered thermal behavior of the numerical model after the implementation is analyzed for different amounts of the chosen phase change materials using an ESATAN-based subroutine developed by the FH Aachen. The PCM-modelling-subroutine is explained in the paper ICES-2021-110. The results show that an increasing amount of phase change material increasingly damps temperature oscillations. Using an integral part structure some of the mass increase can be compensated.}, language = {en} } @unpublished{SchmuellingGuetzlaffCzupalla2024, author = {Schm{\"u}lling, Max and G{\"u}tzlaff, Joel and Czupalla, Markus}, title = {A thermal simulation environment for moving objects on the lunar surface}, doi = {10.21203/rs.3.rs-3902363/v1}, pages = {12 Seiten}, year = {2024}, abstract = {This paper presents a thermal simulation environment for moving objects on the lunar surface. The goal of the thermal simulation environment is to enable the reliable prediction of the temperature development of a given object on the lunar surface by providing the respective heat fluxes for a mission on a given travel path. The user can import any object geometry and freely define the path that the object should travel. Using the path of the object, the relevant lunar surface geometry is imported from a digital elevation model. The relevant parts of the lunar surface are determined based on distance to the defined path. A thermal model of these surface sections is generated, consisting of a porous layer on top and a denser layer below. The object is moved across the lunar surface, and its inclination is adapted depending on the slope of the terrain below it. Finally, a transient thermal analysis of the object and its environment is performed at several positions on its path and the results are visualized. The paper introduces details on the thermal modeling of the lunar surface, as well as its verification. Furthermore, the structure of the created software is presented. The robustness of the environment is verified with the help of sensitivity studies and possible improvements are presented.}, language = {en} }