@article{SchleserWalkLaufferRaupachetal.2006, author = {Schleser, Markus and Walk-Lauffer, Bernd and Raupach, Michael and Dilthey, Ulrich}, title = {Application of polymers for textile-reinforced concrete}, series = {Journal of materials in civil engineering : properties, applications, durability}, volume = {18}, journal = {Journal of materials in civil engineering : properties, applications, durability}, number = {5}, issn = {0899-1561}, pages = {670 -- 676}, year = {2006}, language = {en} } @article{FeldmannPakGessleretal.2006, author = {Feldmann, Markus and Pak, Daniel and Geßler, Achim and Dilthey, Ulrich and Schleser, Markus}, title = {Bonded connections for textile reinforced concrete structures}, series = {Cailiao-gongcheng = Journal of materials engineering}, journal = {Cailiao-gongcheng = Journal of materials engineering}, number = {Special iss.}, issn = {1001-4381}, pages = {123 -- 127}, year = {2006}, language = {en} } @article{MukherjeePrahlBlecketal.2010, author = {Mukherjee, Krishnendu and Prahl, Ulrich and Bleck, Wolfgang and Reisgen, Uwe and Schleser, Markus and Abdurakhmanov, Aydemir}, title = {Characterization and modelling techniques for gas metal arc welding of DP 600 sheet steels}, series = {Materialwissenschaft und Werkstofftechnik}, volume = {41}, journal = {Materialwissenschaft und Werkstofftechnik}, number = {11}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-4052}, doi = {10.1002/mawe.201000692}, pages = {972 -- 983}, year = {2010}, abstract = {The objectives of the present work are to characterize the Gas Metal Arc Welding process of DP 600 sheet steel and to summarize the modelling techniques. The time-temperature evolution during the welding cycle was measured experimentally and modelled with the softwaretool SimWeld. To model the phase transformations during the welding cycle dilatometer tests were done to quantify the parameters for phase field modelling by MICRESS®. The important input parameters are interface mobility, nucleation density, etc. A contribution was made to include austenite to bainite transformation in MICRESS®. This is useful to predict the microstructure in the fast cooling segments. The phase transformation model is capable to predict the microstructure along the heating and cooling cycles of welding. Tensile tests have shown the evidence of failure at the heat affected zone, which has the ferrite-tempered martensite microstructure.}, language = {en} } @article{MukherjeeRamazaniYangetal.2011, author = {Mukherjee, Krishnendu and Ramazani, Ali and Yang, Li and Prahl, Ulrich and Bleck, Wolfgang and Reisgen, Uwe and Schleser, Markus and Abdurakhmanov, Aydemir}, title = {Characterization of gas metal arc welded hot rolled DP600 steel}, series = {Steel research international}, volume = {Vol. 82}, journal = {Steel research international}, number = {Iss. 12}, publisher = {Wiley}, address = {Weinheim}, issn = {1869-344X (E-Book); 1611-3683 (Print)}, pages = {1408 -- 1416}, year = {2011}, language = {en} } @article{DiltheyBrandenburgSchleser2004, author = {Dilthey, Ulrich and Brandenburg, Annette and Schleser, Markus}, title = {Dispensing and application of unfilled adhesives in the micro range}, series = {Welding and cutting. 3 (2004), H. 4}, journal = {Welding and cutting. 3 (2004), H. 4}, issn = {1612-3433}, pages = {250 -- 254}, year = {2004}, language = {en} } @article{RoesnerScheikOlowinskyetal.2011, author = {Roesner, Andreas and Scheik, Sven and Olowinsky, Alexander and Gillner, Arnold and Propawe, Reinhart and Schleser, Markus and Reisgen, Uwe}, title = {Innovative approach of joining hybrid components}, series = {Journal of laser applications}, volume = {Vol. 23}, journal = {Journal of laser applications}, number = {Iss. 3}, publisher = {Laser Institute of America}, address = {Orlando, Fla.}, issn = {1042-346X}, pages = {32007}, year = {2011}, language = {en} } @article{GlowaniaGriesSchoeneetal.2011, author = {Glowania, Michael and Gries, Thomas and Schoene, Jens and Schleser, Markus and Reisgen, Uwe}, title = {Innovative coating technology for textile reinforcements of concrete applications}, series = {13th International Congress on Polymers in Concrete : 10 - 12 February 2010, Funchal, Madeira, Portugal.(Key engineering materials. Vol. 466)}, journal = {13th International Congress on Polymers in Concrete : 10 - 12 February 2010, Funchal, Madeira, Portugal.(Key engineering materials. Vol. 466)}, publisher = {Trans Tech Publications}, address = {B{\"a}ch}, organization = {International Congress Polymers in Concrete <13, 2010, Funchal, Madeira>}, isbn = {978-3-03785-008-4}, issn = {1013-9826 (E-Journal) ; 0252-1059 (Print)}, pages = {167 -- 173}, year = {2011}, language = {en} } @article{DiltheySchleserFeldmannetal.2008, author = {Dilthey, Ulrich and Schleser, Markus and Feldmann, Martin and Pak, Daniel and Geßler, Achim}, title = {Investigation of punctiform, plane and hybrid joints of textile-reinforced concrete parts}, series = {Cement and concrete composites}, volume = {Vol. 30}, journal = {Cement and concrete composites}, number = {iss. 2}, issn = {0958-9465}, pages = {82 -- 87}, year = {2008}, language = {en} } @article{RoesnerScheikOlowinskyetal.2011, author = {Roesner, Andreas and Scheik, Sven and Olowinsky, Alexander and Gillner, Arnold and Reisgen, Uwe and Schleser, Markus}, title = {Laser assisted joining of plastic metal hybrids}, series = {Lasers in manufacturing 2011 : proceedings of the sixth International WLT Conference on Lasers in Manufacturing, Munich, May 23 - 26 2011. (Physics procedia ; Vol. 12 (2011), Part B)}, journal = {Lasers in manufacturing 2011 : proceedings of the sixth International WLT Conference on Lasers in Manufacturing, Munich, May 23 - 26 2011. (Physics procedia ; Vol. 12 (2011), Part B)}, publisher = {Elsevier}, address = {Amsterdam}, organization = {International WLT Conference on Lasers in Manufacturing <6, M{\"u}nchen, 2011>}, issn = {1875-3892 (E-Journal); 1875-3884 (Print)}, pages = {370 -- 377}, year = {2011}, language = {en} } @article{ReisgenOlschokJakobsetal.2012, author = {Reisgen, Uwe and Olschok, Simon and Jakobs, Stefan and Schleser, Markus and Mokrov, Oleg and Rossiter, Eduardo}, title = {Laser beam submerged arc hybrid welding}, series = {Physics procedia}, volume = {39}, journal = {Physics procedia}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1875-3892}, doi = {10.1016/j.phpro.2012.10.016}, pages = {75 -- 83}, year = {2012}, abstract = {The laser beam-submerged arc hybrid welding method originates from the knowledge that, with increasing penetration depth, the laser beam process has a tendency to pore formation in the lower weld regions. The coupling with the energy-efficient submerged-arc process improves degassing and reduces the tendency to pore formation. The high deposition rate of the SA process in combination with the laser beam process offers, providing the appropriate choice of weld preparation, the possibility of welding plates with a thickness larger than 20° mm in a single pass, and also of welding thicker plates with the double-sided single pass technique.}, language = {en} }