@inproceedings{UlmerWollertChengetal.2020, author = {Ulmer, Jessica and Wollert, J{\"o}rg and Cheng, C. and Dowey, S.}, title = {Enterprise Gamification f{\"u}r produzierende mittelst{\"a}ndische Unternehmen}, series = {Shaping automation for our future: 21. Leitkongress Mess- u. Automatisierungstechnik : Automation 2020 : 30. Juni u. 01. Juli 2020}, booktitle = {Shaping automation for our future: 21. Leitkongress Mess- u. Automatisierungstechnik : Automation 2020 : 30. Juni u. 01. Juli 2020}, publisher = {VDI-Verlag}, address = {D{\"u}sseldorf}, isbn = {978-3-18-092375-8}, pages = {157 -- 165}, year = {2020}, language = {de} } @inproceedings{ChavezBermudezWollert2020, author = {Chavez Bermudez, Victor Francisco and Wollert, J{\"o}rg}, title = {Arduino based Framework for Rapid Application Development of a Generic IO-Link interface}, series = {Kommunikation und Bildverarbeitung in der Automation}, booktitle = {Kommunikation und Bildverarbeitung in der Automation}, publisher = {Springer Vieweg}, address = {Berlin}, isbn = {978-3-662-59895-5}, doi = {10.1007/978-3-662-59895-5_2}, pages = {21 -- 33}, year = {2020}, abstract = {The implementation of IO-Link in the automation industry has increased over the years. Its main advantage is it offers a digital point-to-point plugand-play interface for any type of device or application. This simplifies the communication between devices and increases productivity with its different features like self-parametrization and maintenance. However, its complete potential is not always used. The aim of this paper is to create an Arduino based framework for the development of generic IO-Link devices and increase its implementation for rapid prototyping. By generating the IO device description file (IODD) from a graphical user interface, and further customizable options for the device application, the end-user can intuitively develop generic IO-Link devices. The peculiarity of this framework relies on its simplicity and abstraction which allows to implement any sensor functionality and virtually connect any type of device to an IO-Link master. This work consists of the general overview of the framework, the technical background of its development and a proof of concept which demonstrates the workflow for its implementation.}, language = {en} } @inproceedings{KaschSchmidtEichleretal.2020, author = {Kasch, Susanne and Schmidt, Thomas and Eichler, Fabian and Thurn, Laura and Jahn, Simon and Bremen, Sebastian}, title = {Solution approaches and process concepts for powder bed-based melting of glass}, series = {Industrializing Additive Manufacturing. Proceedings of AMPA2020}, booktitle = {Industrializing Additive Manufacturing. Proceedings of AMPA2020}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-54333-4 (Print)}, doi = {10.1007/978-3-030-54334-1_7}, pages = {82 -- 95}, year = {2020}, abstract = {In the study, the process chain of additive manufacturing by means of powder bed fusion will be presented based on the material glass. In order to reliably process components additively, new concepts with different solutions were developed and investigated. Compared to established metallic materials, the properties of glass materials differ significantly. Therefore, the process control was adapted to the material glass in the investigations. With extensive parameter studies based on various glass powders such as borosilicate glass and quartz glass, scientifically proven results on powder bed fusion of glass are presented. Based on the determination of the particle properties with different methods, extensive investigations are made regarding the melting behavior of glass by means of laser beams. Furthermore, the experimental setup was steadily expanded. In addition to the integration of coaxial temperature measurement and regulation, preheating of the building platform is of major importance. This offers the possibility to perform 3D printing at the transformation temperatures of the glass materials. To improve the component's properties, the influence of a subsequent heat treatment was also investigated. The experience gained was incorporated into a new experimental system, which allows a much better exploration of the 3D printing of glass. Currently, studies are being conducted to improve surface texture, building accuracy, and geometrical capabilities using three-dimensional specimen. The contribution shows the development of research in the field of 3D printing of glass, gives an insight into the machine and process engineering as well as an outlook on the possibilities and applications.}, language = {en} } @inproceedings{UlmerBraunChengetal.2020, author = {Ulmer, Jessica and Braun, Sebastian and Cheng, Chi-Tsun and Dowey, Steve and Wollert, J{\"o}rg}, title = {Gamified Virtual Reality Training Environment for the Manufacturing Industry}, doi = {10.1109/ME49197.2020.9286661}, pages = {1 -- 6}, year = {2020}, language = {de} } @inproceedings{UlmerBraunChengetal.2020, author = {Ulmer, Jessica and Braun, Sebastian and Cheng, Chi-Tsun and Dowey, Steve and Wollert, J{\"o}rg}, title = {Simulation und Verifikation komplexer Handarbeitsprozesse durch die Kombination von Virtual Reality und Augmented Reality im Single-Piece-Workflow}, series = {AALE 2020, 17. Fachkonferenz Angewandte Automatisierungstechnik in Lehre und Entwicklung, Automatisierung und Mensch-Technik-Interaktion, Leipzig, DE, 4.-6.3.2020}, booktitle = {AALE 2020, 17. Fachkonferenz Angewandte Automatisierungstechnik in Lehre und Entwicklung, Automatisierung und Mensch-Technik-Interaktion, Leipzig, DE, 4.-6.3.2020}, isbn = {978-3-8007-5180-8}, pages = {1 -- 4}, year = {2020}, language = {de} } @inproceedings{WiesenSchleser2019, author = {Wiesen, Andreas and Schleser, Markus}, title = {Entwicklung einer Qualit{\"a}tssicherung f{\"u}r das Laserstrahlschweißen im Vakuum mittels Bildverarbeitung}, series = {Große Schweißtechnische Tagung}, booktitle = {Große Schweißtechnische Tagung}, publisher = {DVS-Media}, address = {D{\"u}sseldorf}, isbn = {978-3-96144-066-5}, pages = {1 -- 6}, year = {2019}, language = {de} } @inproceedings{OttenGerhardsSchleseretal.2019, author = {Otten, Christian and Gerhards, Benjamin and Schleser, Markus and Schwarz, A. and Gebhardt, Andreas}, title = {Innovative Laserschweißtechnologie f{\"u}r additiv gefertigte Bauteile}, series = {Große Schweißtechnische Tagung}, booktitle = {Große Schweißtechnische Tagung}, publisher = {DVS-Media}, address = {D{\"u}sseldorf}, isbn = {978-3-96144-066-5}, pages = {150 -- 157}, year = {2019}, language = {de} } @inproceedings{LuftGebhardtBalc2019, author = {Luft, Angela and Gebhardt, Andreas and Balc, Nicolae}, title = {Challenges of additive manufacturing in production systems}, series = {Modern technologies in manufacturing (MTeM 2019)}, volume = {299}, booktitle = {Modern technologies in manufacturing (MTeM 2019)}, number = {Article 01003}, doi = {10.1051/matecconf/201929901003}, pages = {6 Seiten}, year = {2019}, language = {en} } @inproceedings{AbbasThurnKessleretal.2019, author = {Abbas, Karim and Thurn, Laura and Kessler, Julia and Eichler, Fabian}, title = {Basic research of the consideration of additive manufactured lattice structures under thermoand fluid dynamic loads}, series = {Modern technologies in manufacturing (MTeM 2019)}, volume = {299}, booktitle = {Modern technologies in manufacturing (MTeM 2019)}, number = {Article 01009}, doi = {10.1051/matecconf/201929901009}, pages = {8 Seiten}, year = {2019}, language = {en} } @inproceedings{EichlerSkupinThurnetal.2019, author = {Eichler, Fabian and Skupin, Marco and Thurn, Laura and Kasch, Susanne and Schmidt, Thomas}, title = {Operating limits for beam melting of glass materials}, series = {Modern Technologies in Manufacturing (MTeM 2019)}, volume = {299}, booktitle = {Modern Technologies in Manufacturing (MTeM 2019)}, number = {Article 01004}, doi = {10.1051/matecconf/201929901004}, pages = {8 Seiten}, year = {2019}, abstract = {Laser-based Additive Manufacturing (AM) processes for the use of metals out of the powder bed have been investigated profusely and are prevalent in industry. Although there is a broad field of application, Laser Powder Bed Fusion (LPBF), also known as Selective Laser Melting (SLM) of glass is not fully developed yet. The material properties of glass are significantly different from the investigated metallic material for LPBF so far. As such, the process cannot be transferred, and the parameter limits and the process sequence must be redefined for glass. Starting with the characterization of glass powders, a parameter field is initially confined to investigate the process parameter of different glass powder using LPBFprocess. A feasibility study is carried out to process borosilicate glass powder. The effects of process parameters on the dimensional accuracy of fabricated parts out of borosilicate and hints for the post-processing are analysed and presented in this paper.}, language = {en} }