@article{EichlerBalcBremenetal.2024, author = {Eichler, Fabian and Balc, Nicolae and Bremen, Sebastian and Nink, Philipp}, title = {Investigation of laser powder bed fusion parameters with respect to their influence on the thermal conductivity of 316L samples}, series = {Journal of Manufacturing and Materials Processing}, volume = {8}, journal = {Journal of Manufacturing and Materials Processing}, number = {4}, publisher = {MDPI}, address = {Basel}, issn = {2504-4494}, doi = {10.3390/jmmp8040166}, pages = {12 Seiten}, year = {2024}, abstract = {The thermal conductivity of components manufactured using Laser Powder Bed Fusion (LPBF), also called Selective Laser Melting (SLM), plays an important role in their processing. Not only does a reduced thermal conductivity cause residual stresses during the process, but it also makes subsequent processes such as the welding of LPBF components more difficult. This article uses 316L stainless steel samples to investigate whether and to what extent the thermal conductivity of specimens can be influenced by different LPBF parameters. To this end, samples are set up using different parameters, orientations, and powder conditions and measured by a heat flow meter using stationary analysis. The heat flow meter set-up used in this study achieves good reproducibility and high measurement accuracy, so that comparative measurements between the various LPBF influencing factors to be tested are possible. In summary, the series of measurements show that the residual porosity of the components has the greatest influence on conductivity. The degradation of the powder due to increased recycling also appears to be detectable. The build-up direction shows no detectable effect in the measurement series.}, language = {en} } @article{LuftBremenLuft2023, author = {Luft, Angela and Bremen, Sebastian and Luft, Nils}, title = {A cost/benefit and flexibility evaluation framework for additive technologies in strategic factory planning}, series = {Processes}, volume = {11}, journal = {Processes}, number = {7}, publisher = {MDPI}, address = {Basel}, issn = {2227-9717}, doi = {10.3390/pr11071968}, pages = {Artikel 1968}, year = {2023}, abstract = {There is a growing demand for more flexibility in manufacturing to counter the volatility and unpredictability of the markets and provide more individualization for customers. However, the design and implementation of flexibility within manufacturing systems are costly and only economically viable if applicable to actual demand fluctuations. To this end, companies are considering additive manufacturing (AM) to make production more flexible. This paper develops a conceptual model for the impact quantification of AM on volume and mix flexibility within production systems in the early stages of the factory-planning process. Together with the model, an application guideline is presented to help planners with the flexibility quantification and the factory design process. Following the development of the model and guideline, a case study is presented to indicate the potential impact additive technologies can have on manufacturing flexibility Within the case study, various scenarios with different production system configurations and production programs are analyzed, and the impact of the additive technologies on volume and mix flexibility is calculated. This work will allow factory planners to determine the potential impacts of AM on manufacturing flexibility in an early planning stage and design their production systems accordingly.}, language = {en} } @article{Pfaff2023, author = {Pfaff, Raphael}, title = {Braking distance prediction for vehicle consist in low-speed on-sight operation: a Monte Carlo approach}, series = {Railway Engineering Science}, volume = {31}, journal = {Railway Engineering Science}, number = {2}, publisher = {SpringerOpen}, issn = {2662-4753 (eISSN)}, doi = {10.1007/s40534-023-00303-7}, pages = {135 -- 144}, year = {2023}, abstract = {The first and last mile of a railway journey, in both freight and transit applications, constitutes a high effort and is either non-productive (e.g. in the case of depot operations) or highly inefficient (e.g. in industrial railways). These parts are typically managed on-sight, i.e. with no signalling and train protection systems ensuring the freedom of movement. This is possible due to the rather short braking distances of individual vehicles and shunting consists. The present article analyses the braking behaviour of such shunting units. For this purpose, a dedicated model is developed. It is calibrated on published results of brake tests and validated against a high-definition model for low-speed applications. Based on this model, multiple simulations are executed to obtain a Monte Carlo simulation of the resulting braking distances. Based on the distribution properties and established safety levels, the risk of exceeding certain braking distances is evaluated and maximum braking distances are derived. Together with certain parameters of the system, these can serve in the design and safety assessment of driver assistance systems and automation of these processes.}, language = {en} } @article{ChengWollertChenetal.2023, author = {Cheng, Chi-Tsun and Wollert, J{\"o}rg and Chen, Xi and Fapojuwo, Abraham O.}, title = {Guest Editorial : Circuits and Systems for Industry X.0 Applications}, series = {IEEE Journal on Emerging and Selected Topics in Circuits and Systems}, volume = {13}, journal = {IEEE Journal on Emerging and Selected Topics in Circuits and Systems}, edition = {2}, publisher = {IEEE}, address = {New York}, issn = {2156-3357 (Print)}, doi = {10.1109/JETCAS.2023.3278843}, pages = {457 -- 460}, year = {2023}, language = {en} } @article{UlmerBraunChengetal.2023, author = {Ulmer, Jessica and Braun, Sebastian and Cheng, Chi-Tsun and Dowey, Steve and Wollert, J{\"o}rg}, title = {A human factors-aware assistance system in manufacturing based on gamification and hardware modularisation}, series = {International Journal of Production Research}, journal = {International Journal of Production Research}, publisher = {Taylor \& Francis}, issn = {0020-7543 (Print)}, doi = {10.1080/00207543.2023.2166140}, year = {2023}, abstract = {Assistance systems have been widely adopted in the manufacturing sector to facilitate various processes and tasks in production environments. However, existing systems are mostly equipped with rigid functional logic and do not provide individual user experiences or adapt to their capabilities. This work integrates human factors in assistance systems by adjusting the hardware and instruction presented to the workers' cognitive and physical demands. A modular system architecture is designed accordingly, which allows a flexible component exchange according to the user and the work task. Gamification, the use of game elements in non-gaming contexts, has been further adopted in this work to provide level-based instructions and personalised feedback. The developed framework is validated by applying it to a manual workstation for industrial assembly routines.}, language = {en} } @article{LuftLuftArntz2023, author = {Luft, Angela and Luft, Nils and Arntz, Kristian}, title = {A basic description logic for service-oriented architecture in factory planning and operational control in the age of industry 4.0}, series = {Applied Sciences}, volume = {2023}, journal = {Applied Sciences}, number = {13}, publisher = {MDPI}, address = {Basel}, issn = {2076-3417}, doi = {10.3390/app13137610}, pages = {23 Seiten}, year = {2023}, abstract = {Manufacturing companies across multiple industries face an increasingly dynamic and unpredictable environment. This development can be seen on both the market and supply side. To respond to these challenges, manufacturing companies must implement smart manufacturing systems and become more flexible and agile. The flexibility in operational planning regarding the scheduling and sequencing of customer orders needs to be increased and new structures must be implemented in manufacturing systems' fundamental design as they constitute much of the operational flexibility available. To this end, smart and more flexible solutions for production planning and control (PPC) are developed. However, scheduling or sequencing is often only considered isolated in a predefined stable environment. Moreover, their orientation on the fundamental logic of the existing IT solutions and their applicability in a dynamic environment is limited. This paper presents a conceptual model for a task-based description logic that can be applied to factory planning, technology planning, and operational control. By using service-oriented architectures, the goal is to generate smart manufacturing systems. The logic is designed to allow for easy and automated maintenance. It is compatible with the existing resource and process allocation logic across operational and strategic factory and production planning.}, language = {en} } @article{AbbasHedwigBalcetal.2023, author = {Abbas, Karim and Hedwig, Lukas and Balc, Nicolae and Bremen, Sebastian}, title = {Advanced FFF of PEEK: Infill strategies and material characteristics for rapid tooling}, series = {Polymers}, volume = {2023}, journal = {Polymers}, number = {15}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/polym15214293}, pages = {Artikel 4293}, year = {2023}, abstract = {Traditional vulcanization mold manufacturing is complex, costly, and under pressure due to shorter product lifecycles and diverse variations. Additive manufacturing using Fused Filament Fabrication and high-performance polymers like PEEK offer a promising future in this industry. This study assesses the compressive strength of various infill structures (honeycomb, grid, triangle, cubic, and gyroid) when considering two distinct build directions (Z, XY) to enhance PEEK's economic and resource efficiency in rapid tooling. A comparison with PETG samples shows the behavior of the infill strategies. Additionally, a proof of concept illustrates the application of a PEEK mold in vulcanization. A peak compressive strength of 135.6 MPa was attained in specimens that were 100\% solid and subjected to thermal post-treatment. This corresponds to a 20\% strength improvement in the Z direction. In terms of time and mechanical properties, the anisotropic grid and isotropic cubic infill have emerged for use in rapid tooling. Furthermore, the study highlights that reducing the layer thickness from 0.15 mm to 0.1 mm can result in a 15\% strength increase. The study unveils the successful utilization of a room-temperature FFF-printed PEEK mold in vulcanization injection molding. The parameters and infill strategies identified in this research enable the resource-efficient FFF printing of PEEK without compromising its strength properties. Using PEEK in rapid tooling allows a cost reduction of up to 70\% in tool production.}, language = {en} } @article{EmontsBuyel2023, author = {Emonts, Jessica and Buyel, Johannes Felix}, title = {An overview of descriptors to capture protein properties - Tools and perspectives in the context of QSAR modeling}, series = {Computational and Structural Biotechnology Journal}, journal = {Computational and Structural Biotechnology Journal}, number = {21}, publisher = {Research Network of Computational and Structural Biotechnology}, address = {Gotenburg}, issn = {2001-0370 (online-ressource)}, doi = {10.1016/j.csbj.2023.05.022}, pages = {3234 -- 3247}, year = {2023}, abstract = {Proteins are important ingredients in food and feed, they are the active components of many pharmaceutical products, and they are necessary, in the form of enzymes, for the success of many technical processes. However, production can be challenging, especially when using heterologous host cells such as bacteria to express and assemble recombinant mammalian proteins. The manufacturability of proteins can be hindered by low solubility, a tendency to aggregate, or inefficient purification. Tools such as in silico protein engineering and models that predict separation criteria can overcome these issues but usually require the complex shape and surface properties of proteins to be represented by a small number of quantitative numeric values known as descriptors, as similarly used to capture the features of small molecules. Here, we review the current status of protein descriptors, especially for application in quantitative structure activity relationship (QSAR) models. First, we describe the complexity of proteins and the properties that descriptors must accommodate. Then we introduce descriptors of shape and surface properties that quantify the global and local features of proteins. Finally, we highlight the current limitations of protein descriptors and propose strategies for the derivation of novel protein descriptors that are more informative.}, language = {en} } @article{AbbasBalcBremenetal.2022, author = {Abbas, Karim and Balc, Nicolae and Bremen, Sebastian and Skupin, Marco}, title = {Crystallization and aging behavior of polyetheretherketone PEEK within rapid tooling and rubber molding}, series = {Journal of Manufacturing and Materials Processing}, volume = {6}, journal = {Journal of Manufacturing and Materials Processing}, number = {5}, publisher = {MDPI}, address = {Basel}, issn = {2504-4494}, doi = {10.3390/jmmp6050093}, pages = {1 -- 12}, year = {2022}, abstract = {In times of short product life cycles, additive manufacturing and rapid tooling are important methods to make tool development and manufacturing more efficient. High-performance polymers are the key to mold production for prototypes and small series. However, the high temperatures during vulcanization injection molding cause thermal aging and can impair service life. The extent to which the thermal stress over the entire process chain stresses the material and whether it leads to irreversible material aging is evaluated. To this end, a mold made of PEEK is fabricated using fused filament fabrication and examined for its potential application. The mold is heated to 200 ◦C, filled with rubber, and cured. A differential scanning calorimetry analysis of each process step illustrates the crystallization behavior and first indicates the material resistance. It shows distinct cold crystallization regions at a build chamber temperature of 90 ◦C. At an ambient temperature above Tg, crystallization of 30\% is achieved, and cold crystallization no longer occurs. Additional tensile tests show a decrease in tensile strength after ten days of thermal aging. The steady decrease in recrystallization temperature indicates degradation of the additives. However, the tensile tests reveal steady embrittlement of the material due to increasing crosslinking.}, language = {en} } @inproceedings{EvansBraunUlmeretal.2022, author = {Evans, Benjamin and Braun, Sebastian and Ulmer, Jessica and Wollert, J{\"o}rg}, title = {AAS implementations - current problems and solutions}, series = {20th International Conference on Mechatronics - Mechatronika (ME)}, booktitle = {20th International Conference on Mechatronics - Mechatronika (ME)}, publisher = {IEEE}, address = {New York, NY}, isbn = {978-1-6654-1040-3}, doi = {10.1109/ME54704.2022.9982933}, pages = {6 Seiten}, year = {2022}, abstract = {The fourth industrial revolution presents a multitude of challenges for industries, one of which being the increased flexibility required of manufacturing lines as a result of increased consumer demand for individualised products. One solution to tackle this challenge is the digital twin, more specifically the standardised model of a digital twin also known as the asset administration shell. The standardisation of an industry wide communications tool is a critical step in enabling inter-company operations. This paper discusses the current state of asset administration shells, the frameworks used to host them and their problems that need to be addressed. To tackle these issues, we propose an event-based server capable of drastically reducing response times between assets and asset administration shells and a multi-agent system used for the orchestration and deployment of the shells in the field.}, language = {en} }