@incollection{KallweitGottschalkWalenta2016, author = {Kallweit, Stephan and Gottschalk, Michael and Walenta, Robert}, title = {ROS based safety concept for collaborative robots in industrial applications}, series = {Advances in robot design and intelligent control : proceedings of the 24th International Conference on Robotics in Alpe-Adria-Danube Region (RAAD). (Advances in intelligent systems and computing ; 371)}, booktitle = {Advances in robot design and intelligent control : proceedings of the 24th International Conference on Robotics in Alpe-Adria-Danube Region (RAAD). (Advances in intelligent systems and computing ; 371)}, publisher = {Springer}, address = {Cham}, organization = {International Conference on Robotics in Alpe-Adria-Danube Region <24, 2015, Bucharest>}, isbn = {978-3-319-21289-0 (Print) ; 978-3-319-21290-6 (E-Book)}, doi = {10.1007/978-3-319-21290-6_3}, pages = {27 -- 35}, year = {2016}, abstract = {The production and assembly of customized products increases the demand for flexible automation systems. One approach is to remove the safety fences that separate human and industrial robot to combine their skills. This collaboration possesses a certain risk for the human co-worker, leading to numerous safety concepts to protect him. The human needs to be monitored and tracked by a safety system using different sensors. The proposed system consists of a RGBD camera for surveillance of the common working area, an array of optical distance sensors to compensate shadowing effects of the RGBD camera and a laser range finder to detect the co-worker when approaching the work cell. The software for collision detection, path planning, robot control and predicting the behaviour of the co-worker is based on the Robot Operating System (ROS). A first prototype of the work cell shows that with advanced algorithms from the field of mobile robotics a very flexible safety concept can be realized: the robot not simply stops its movement when detecting a collision, but plans and executes an alternative path around the obstacle.}, language = {en} } @inproceedings{NakagawaKallweitMichauxetal.2016, author = {Nakagawa, Masaki and Kallweit, Stephan and Michaux, Frank and Hojo, Teppei}, title = {Typical Velocity Fields and Vortical Structures around a Formula One Car, based on Experimental Investigations using Particle Image Velocimetry}, series = {SAE International Journal of Passenger Cars - Mechanical Systems}, booktitle = {SAE International Journal of Passenger Cars - Mechanical Systems}, issn = {1946-4002}, doi = {10.4271/2016-01-1611}, pages = {18 S.}, year = {2016}, language = {en} } @article{Wollert2016, author = {Wollert, J{\"o}rg}, title = {Industrial Internet of Things : Seifenblase oder Revolution}, series = {Elektronik}, journal = {Elektronik}, number = {7}, publisher = {WEKA-Fachmedien}, address = {M{\"u}nchen}, issn = {0013-5658}, pages = {39 -- 45}, year = {2016}, language = {de} } @book{GebhardtHoetter2016, author = {Gebhardt, Andreas and H{\"o}tter, Jan-Steffen}, title = {Additive manufacturing : 3D printing for prototyping and manufacturing}, publisher = {Hanser Publishers}, address = {Munich}, isbn = {978-1-56990-582-1 ; 978-1-56990-583-8}, pages = {591 S.}, year = {2016}, language = {en} } @book{GebhardtKesslerThurn2016, author = {Gebhardt, Andreas and Kessler, Julia and Thurn, Laura}, title = {3D-Drucken: Grundlagen und Anwendungen des additive manufacturing (AM)}, edition = {2., neu bearbeitete und erweiterte Auflage}, publisher = {Hanser}, address = {M{\"u}nchen}, isbn = {978-3-446-44672-4}, doi = {10.3139/9783446448452}, pages = {XVI, 218 Seiten}, year = {2016}, language = {de} } @article{KosterScheidweilerTieves2016, author = {Koster, Arie and Scheidweiler, Robert and Tieves, Martin}, title = {A flow based pruning scheme for enumerative equitable coloring algorithms}, series = {A flow based pruning scheme for enumerative equitable coloring algorithms}, journal = {A flow based pruning scheme for enumerative equitable coloring algorithms}, doi = {10.48550/arXiv.1607.08754}, pages = {1 -- 30}, year = {2016}, abstract = {An equitable graph coloring is a proper vertex coloring of a graph G where the sizes of the color classes differ by at most one. The equitable chromatic number is the smallest number k such that G admits such equitable k-coloring. We focus on enumerative algorithms for the computation of the equitable coloring number and propose a general scheme to derive pruning rules for them: We show how the extendability of a partial coloring into an equitable coloring can be modeled via network flows. Thus, we obtain pruning rules which can be checked via flow algorithms. Computational experiments show that the search tree of enumerative algorithms can be significantly reduced in size by these rules and, in most instances, such naive approach even yields a faster algorithm. Moreover, the stability, i.e., the number of solved instances within a given time limit, is greatly improved. Since the execution of flow algorithms at each node of a search tree is time consuming, we derive arithmetic pruning rules (generalized Hall-conditions) from the network model. Adding these rules to an enumerative algorithm yields an even larger runtime improvement.}, language = {en} } @article{BeckenbachScheidweiler2016, author = {Beckenbach, Isabel and Scheidweiler, Robert}, title = {Perfect ƒ-Matchings and ƒ-Factors in Hypergraphs - A Combinatorial Approach}, series = {Discrete Mathematics}, volume = {240}, journal = {Discrete Mathematics}, number = {10}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2192-7782}, doi = {10.1016/j.disc.2017.05.005}, pages = {2499 -- 2506}, year = {2016}, abstract = {We prove characterizations of the existence of perfect ƒ-matchings in uniform mengerian and perfect hypergraphs. Moreover, we investigate the ƒ-factor problem in balanced hypergraphs. For uniform balanced hypergraphs we prove two existence theorems with purely combinatorial arguments, whereas for non-uniform balanced hypergraphs we show that the ƒ-factor problem is NP-hard.}, language = {en} } @article{ScheidweilerTriesch2016, author = {Scheidweiler, Robert and Triesch, Eberhard}, title = {A note on the duality between matchings and vertex covers in balanced hypergraphs}, series = {Journal of Combinatorial Optimization}, volume = {32}, journal = {Journal of Combinatorial Optimization}, number = {2}, publisher = {Springer}, address = {Berlin}, issn = {1573-2886}, doi = {10.1007/s10878-015-9887-5}, pages = {639 -- 644}, year = {2016}, abstract = {We present a new Min-Max theorem for an optimization problem closely connected to matchings and vertex covers in balanced hypergraphs. The result generalizes Kőnig's Theorem (Berge and Las Vergnas in Ann N Y Acad Sci 175:32-40, 1970; Fulkerson et al. in Math Progr Study 1:120-132, 1974) and Hall's Theorem (Conforti et al. in Combinatorica 16:325-329, 1996) for balanced hypergraphs.}, language = {en} } @article{RieperGebhardtStucker2016, author = {Rieper, Harald and Gebhardt, Andreas and Stucker, Brent}, title = {Selective Laser Melting of the Eutectic Silver-Copper Alloy Ag 28 wt \% Cu}, series = {RTejournal - Forum f{\"u}r Rapid Technologie}, volume = {13}, journal = {RTejournal - Forum f{\"u}r Rapid Technologie}, issn = {1614-0923}, url = {http://nbn-resolving.de/nbn:de:0009-2-44141}, year = {2016}, abstract = {The aim of this work was to perform a detailed investigation of the use of Selective Laser Melting (SLM) technology to process eutectic silver-copper alloy Ag 28 wt. \% Cu (also called AgCu28). The processing occurred with a Realizer SLM 50 desktop machine. The powder analysis (SEM-topography, EDX, particle distribution) was reported as well as the absorption rates for the near-infrared (NIR) spectrum. Microscope imaging showed the surface topography of the manufactured parts. Furthermore, microsections were conducted for the analysis of porosity. The Design of Experiments approach used the response surface method in order to model the statistical relationship between laser power, spot distance and pulse time.}, language = {en} } @book{Gebhardt2016, author = {Gebhardt, Andreas}, title = {Additive Fertigungsverfahren : Additive Manufacturing und 3D-Drucken f{\"u}r Prototyping - Tooling - Produktion}, edition = {5. aktualisierte und erweiterte Auflage}, publisher = {Hanser}, address = {M{\"u}nchen}, isbn = {978-3-446-44401-0 ; 978-3-446-44539-0}, doi = {10.3139/9783446445390}, pages = {XXIV, 711 S. : zahlr. Ill. u. graph. Darst.}, year = {2016}, language = {de} }