@article{HoetterFateriGebhardt2012, author = {H{\"o}tter, Jan-Steffen and Fateri, Miranda and Gebhardt, Andreas}, title = {Prozessoptimierung des SLM-Prozesses mit hoch-reflektiven und thermisch sehr gut leitenden Materialien durch systematische Parameterfindung und begleitende Simulationen am Beispiel von Silber}, series = {RTejournal - Forum f{\"u}r Rapid Technologie}, volume = {9}, journal = {RTejournal - Forum f{\"u}r Rapid Technologie}, number = {1}, publisher = {Fachhoschule Aachen}, address = {Aachen}, issn = {1614-0923}, url = {http://nbn-resolving.de/urn:nbn:de:0009-2-33639}, pages = {1 -- 14}, year = {2012}, abstract = {Additive Manufacturing durch Aufschmelzen von Metallpulvern hat sich auf breiter Front als Herstellverfahren, auch f{\"u}r Endprodukte, etabliert. Besonders f{\"u}r die Variante des Selective Laser Melting (SLM) sind Anwendungen in der Zahntechnik bereits weit verbreitet und der Einsatz in sensitiven Branchen wie der Luftfahrt ist in greifbare N{\"a}he ger{\"u}ckt. Deshalb werden auch vermehrt Anstrengungen unternommen, um bisher nicht verarbeitete Materialien zu qualifizieren. Dies sind vorzugsweise Nicht-Eisen- und Edelmetalle, die sowohl eine sehr hohe Reflektivit{\"a}t als auch eine sehr gute W{\"a}rmeleitf{\"a}higkeit aufweisen - beides Eigenschaften, die die Beherrschung des Laser-Schmelzprozesses erschweren und nur kleine Prozessfenster zulassen. Die Arbeitsgruppe SLM des Lehr- und Forschungsgebietes Hochleistungsverfahren der Fertigungstechnik hat sich unter der Randbedingung einer kleinen und mit geringer Laserleistung ausgestatteten SLM Maschine der Aufgabe gewidmet und am Beispiel von Silber die Parameterfelder f{\"u}r Einzelspuren und wenig komplexe Geometrien systematisch untersucht. Die Arbeiten wurden von FEM Simulationen begleitet und durch metallographische Untersuchungen verifiziert. Die Ergebnisse bilden die Grundlage zur schnellen Parameterfindung bei komplexen Geometrien und bei Ver{\"a}nderungen der Zusammensetzung, wie sie bei zuk{\"u}nftigen Legierungen zu erwarten sind. Die Ergebnisse werden exemplarisch auf unterschiedliche Geometrien angewandt und entsprechende Bauteile gezeigt.}, language = {de} } @article{RieperGebhardtStucker2016, author = {Rieper, Harald and Gebhardt, Andreas and Stucker, Brent}, title = {Selective Laser Melting of the Eutectic Silver-Copper Alloy Ag 28 wt \% Cu}, series = {RTejournal - Forum f{\"u}r Rapid Technologie}, volume = {13}, journal = {RTejournal - Forum f{\"u}r Rapid Technologie}, issn = {1614-0923}, url = {http://nbn-resolving.de/nbn:de:0009-2-44141}, year = {2016}, abstract = {The aim of this work was to perform a detailed investigation of the use of Selective Laser Melting (SLM) technology to process eutectic silver-copper alloy Ag 28 wt. \% Cu (also called AgCu28). The processing occurred with a Realizer SLM 50 desktop machine. The powder analysis (SEM-topography, EDX, particle distribution) was reported as well as the absorption rates for the near-infrared (NIR) spectrum. Microscope imaging showed the surface topography of the manufactured parts. Furthermore, microsections were conducted for the analysis of porosity. The Design of Experiments approach used the response surface method in order to model the statistical relationship between laser power, spot distance and pulse time.}, language = {en} } @article{EichlerBalcBremenetal.2024, author = {Eichler, Fabian and Balc, Nicolae and Bremen, Sebastian and Nink, Philipp}, title = {Investigation of laser powder bed fusion parameters with respect to their influence on the thermal conductivity of 316L samples}, series = {Journal of Manufacturing and Materials Processing}, volume = {8}, journal = {Journal of Manufacturing and Materials Processing}, number = {4}, publisher = {MDPI}, address = {Basel}, issn = {2504-4494}, doi = {10.3390/jmmp8040166}, pages = {12 Seiten}, year = {2024}, abstract = {The thermal conductivity of components manufactured using Laser Powder Bed Fusion (LPBF), also called Selective Laser Melting (SLM), plays an important role in their processing. Not only does a reduced thermal conductivity cause residual stresses during the process, but it also makes subsequent processes such as the welding of LPBF components more difficult. This article uses 316L stainless steel samples to investigate whether and to what extent the thermal conductivity of specimens can be influenced by different LPBF parameters. To this end, samples are set up using different parameters, orientations, and powder conditions and measured by a heat flow meter using stationary analysis. The heat flow meter set-up used in this study achieves good reproducibility and high measurement accuracy, so that comparative measurements between the various LPBF influencing factors to be tested are possible. In summary, the series of measurements show that the residual porosity of the components has the greatest influence on conductivity. The degradation of the powder due to increased recycling also appears to be detectable. The build-up direction shows no detectable effect in the measurement series.}, language = {en} }