@inproceedings{NakagawaKallweitMichauxetal.2016, author = {Nakagawa, Masaki and Kallweit, Stephan and Michaux, Frank and Hojo, Teppei}, title = {Typical Velocity Fields and Vortical Structures around a Formula One Car, based on Experimental Investigations using Particle Image Velocimetry}, series = {SAE International Journal of Passenger Cars - Mechanical Systems}, booktitle = {SAE International Journal of Passenger Cars - Mechanical Systems}, issn = {1946-4002}, doi = {10.4271/2016-01-1611}, pages = {18 S.}, year = {2016}, language = {en} } @book{GebhardtHoetter2016, author = {Gebhardt, Andreas and H{\"o}tter, Jan-Steffen}, title = {Additive manufacturing : 3D printing for prototyping and manufacturing}, publisher = {Hanser Publishers}, address = {Munich}, isbn = {978-1-56990-582-1 ; 978-1-56990-583-8}, pages = {591 S.}, year = {2016}, language = {en} } @article{AbbasBalcBremenetal.2022, author = {Abbas, Karim and Balc, Nicolae and Bremen, Sebastian and Skupin, Marco}, title = {Crystallization and aging behavior of polyetheretherketone PEEK within rapid tooling and rubber molding}, series = {Journal of Manufacturing and Materials Processing}, volume = {6}, journal = {Journal of Manufacturing and Materials Processing}, number = {5}, publisher = {MDPI}, address = {Basel}, issn = {2504-4494}, doi = {10.3390/jmmp6050093}, pages = {1 -- 12}, year = {2022}, abstract = {In times of short product life cycles, additive manufacturing and rapid tooling are important methods to make tool development and manufacturing more efficient. High-performance polymers are the key to mold production for prototypes and small series. However, the high temperatures during vulcanization injection molding cause thermal aging and can impair service life. The extent to which the thermal stress over the entire process chain stresses the material and whether it leads to irreversible material aging is evaluated. To this end, a mold made of PEEK is fabricated using fused filament fabrication and examined for its potential application. The mold is heated to 200 ◦C, filled with rubber, and cured. A differential scanning calorimetry analysis of each process step illustrates the crystallization behavior and first indicates the material resistance. It shows distinct cold crystallization regions at a build chamber temperature of 90 ◦C. At an ambient temperature above Tg, crystallization of 30\% is achieved, and cold crystallization no longer occurs. Additional tensile tests show a decrease in tensile strength after ten days of thermal aging. The steady decrease in recrystallization temperature indicates degradation of the additives. However, the tensile tests reveal steady embrittlement of the material due to increasing crosslinking.}, language = {en} } @inproceedings{SchmidtKaschEichleretal.2021, author = {Schmidt, Thomas and Kasch, Susanne and Eichler, Fabian and Thurn, Laura}, title = {Process strategies on laser-based melting of glass powder}, series = {LiM 2021 proceedings}, booktitle = {LiM 2021 proceedings}, pages = {10 Seiten}, year = {2021}, abstract = {This paper presents the laser-based powder bed fusion (L-PBF) using various glass powders (borosilicate and quartz glass). Compared to metals, these require adapted process strategies. First, the glass powders were characterized with regard to their material properties and their processability in the powder bed. This was followed by investigations of the melting behavior of the glass powders with different laser wavelengths (10.6 µm, 1070 nm). In particular, the experimental setup of a CO2 laser was adapted for the processing of glass powder. An experimental setup with integrated coaxial temperature measurement/control and an inductively heatable build platform was created. This allowed the L-PBF process to be carried out at the transformation temperature of the glasses. Furthermore, the component's material quality was analyzed on three-dimensional test specimen with regard to porosity, roughness, density and geometrical accuracy in order to evaluate the developed L-PBF parameters and to open up possible applications.}, language = {en} } @article{FateriGebhardtThuemmleretal.2014, author = {Fateri, Miranda and Gebhardt, Andreas and Th{\"u}mmler, Stefan and Thurn, Laura}, title = {Experimental investigation on selective laser melting of glass}, series = {Physics procedia : 8th International Conference on Laser Assisted Net Shape Engineering LANE 2014}, volume = {56 (2014)}, journal = {Physics procedia : 8th International Conference on Laser Assisted Net Shape Engineering LANE 2014}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1875-3892 (E-Journal); 1875-3884 (Print)}, doi = {10.1016/j.phpro.2014.08.118}, pages = {357 -- 364}, year = {2014}, language = {en} } @article{LuftBremenLuft2023, author = {Luft, Angela and Bremen, Sebastian and Luft, Nils}, title = {A cost/benefit and flexibility evaluation framework for additive technologies in strategic factory planning}, series = {Processes}, volume = {11}, journal = {Processes}, number = {7}, publisher = {MDPI}, address = {Basel}, issn = {2227-9717}, doi = {10.3390/pr11071968}, pages = {Artikel 1968}, year = {2023}, abstract = {There is a growing demand for more flexibility in manufacturing to counter the volatility and unpredictability of the markets and provide more individualization for customers. However, the design and implementation of flexibility within manufacturing systems are costly and only economically viable if applicable to actual demand fluctuations. To this end, companies are considering additive manufacturing (AM) to make production more flexible. This paper develops a conceptual model for the impact quantification of AM on volume and mix flexibility within production systems in the early stages of the factory-planning process. Together with the model, an application guideline is presented to help planners with the flexibility quantification and the factory design process. Following the development of the model and guideline, a case study is presented to indicate the potential impact additive technologies can have on manufacturing flexibility Within the case study, various scenarios with different production system configurations and production programs are analyzed, and the impact of the additive technologies on volume and mix flexibility is calculated. This work will allow factory planners to determine the potential impacts of AM on manufacturing flexibility in an early planning stage and design their production systems accordingly.}, language = {en} } @inproceedings{AbbasThurnKessleretal.2019, author = {Abbas, Karim and Thurn, Laura and Kessler, Julia and Eichler, Fabian}, title = {Basic research of the consideration of additive manufactured lattice structures under thermoand fluid dynamic loads}, series = {Modern technologies in manufacturing (MTeM 2019)}, volume = {299}, booktitle = {Modern technologies in manufacturing (MTeM 2019)}, number = {Article 01009}, doi = {10.1051/matecconf/201929901009}, pages = {8 Seiten}, year = {2019}, language = {en} } @inproceedings{ThurnGebhardt2017, author = {Thurn, Laura and Gebhardt, Andreas}, title = {Arousing Enthusiasm for STEM: Teaching 3D Printing Technology}, series = {Conference Proceedings: New Perspectives in Science Education}, booktitle = {Conference Proceedings: New Perspectives in Science Education}, publisher = {liberiauniversitaria.it}, address = {Padua}, isbn = {978-88-6292-847-2}, pages = {87 -- 92}, year = {2017}, language = {en} } @inproceedings{FerreinKallweitScholletal.2015, author = {Ferrein, Alexander and Kallweit, Stephan and Scholl, Ingrid and Reichert, Walter}, title = {Learning to Program Mobile Robots in the ROS Summer School Series}, series = {Proceedings 6th International Conference on Robotics in Education (RiE 15)}, booktitle = {Proceedings 6th International Conference on Robotics in Education (RiE 15)}, pages = {6 S.}, year = {2015}, abstract = {The main objective of our ROS Summer School series is to introduce MA level students to program mobile robots with the Robot Operating System (ROS). ROS is a robot middleware that is used my many research institutions world-wide. Therefore, many state-of-the-art algorithms of mobile robotics are available in ROS and can be deployed very easily. As a basic robot platform we deploy a 1/10 RC cart that is wquipped with an Arduino micro-controller to control the servo motors, and an embedded PC that runs ROS. In two weeks, participants get to learn the basics of mobile robotics hands-on. We describe our teaching concepts and our curriculum and report on the learning success of our students.}, language = {en} } @inproceedings{AlhwarinFerreinGebhardtetal.2015, author = {Alhwarin, Faraj and Ferrein, Alexander and Gebhardt, Andreas and Kallweit, Stephan and Scholl, Ingrid and Tedjasukmana, Osmond Sanjaya}, title = {Improving additive manufacturing by image processing and robotic milling}, series = {2015 IEEE International Conference on Automation Science and Engineering (CASE), Aug 24-28, 2015 Gothenburg, Sweden}, booktitle = {2015 IEEE International Conference on Automation Science and Engineering (CASE), Aug 24-28, 2015 Gothenburg, Sweden}, doi = {10.1109/CoASE.2015.7294217}, pages = {924 -- 929}, year = {2015}, language = {en} } @inproceedings{FerreinKallweitLautermann2012, author = {Ferrein, Alexander and Kallweit, Stephan and Lautermann, Mark}, title = {Towards an autonomous pilot system for a tunnel boring machine}, series = {5th Robotics and Mechatronics Conference of South Africa (ROBMECH) : 26 - 27 November 2012 ; CSIR International Conference Centre Gauteng South Africa}, booktitle = {5th Robotics and Mechatronics Conference of South Africa (ROBMECH) : 26 - 27 November 2012 ; CSIR International Conference Centre Gauteng South Africa}, publisher = {IEEE}, address = {Piscataway, NJ}, isbn = {978-1-4673-5183-6}, year = {2012}, language = {en} } @article{HaagZontarSchleupenetal.2014, author = {Haag, S. and Zontar, D. and Schleupen, Josef and M{\"u}ller, T. and Brecher, C.}, title = {Chain of refined perception in self-optimizing assembly of micro-optical systems}, series = {Journal of sensors and sensor systems}, volume = {3}, journal = {Journal of sensors and sensor systems}, number = {1}, publisher = {Copernicus Publ.}, address = {G{\"o}ttingen}, issn = {2194-878X}, doi = {10.5194/jsss-3-87-2014}, pages = {87 -- 95}, year = {2014}, abstract = {Today, the assembly of laser systems requires a large share of manual operations due to its complexity regarding the optimal alignment of optics. Although the feasibility of automated alignment of laser optics has been shown in research labs, the development effort for the automation of assembly does not meet economic requirements - especially for low-volume laser production. This paper presents a model-based and sensor-integrated assembly execution approach for flexible assembly cells consisting of a macro-positioner covering a large workspace and a compact micromanipulator with camera attached to the positioner. In order to make full use of available models from computer-aided design (CAD) and optical simulation, sensor systems at different levels of accuracy are used for matching perceived information with model data. This approach is named "chain of refined perception", and it allows for automated planning of complex assembly tasks along all major phases of assembly such as collision-free path planning, part feeding, and active and passive alignment. The focus of the paper is put on the in-process image-based metrology and information extraction used for identifying and calibrating local coordinate systems as well as the exploitation of that information for a part feeding process for micro-optics. Results will be presented regarding the processes of automated calibration of the robot camera as well as the local coordinate systems of part feeding area and robot base.}, language = {en} } @article{RieperGebhardtStucker2016, author = {Rieper, Harald and Gebhardt, Andreas and Stucker, Brent}, title = {Selective Laser Melting of the Eutectic Silver-Copper Alloy Ag 28 wt \% Cu}, series = {RTejournal - Forum f{\"u}r Rapid Technologie}, volume = {13}, journal = {RTejournal - Forum f{\"u}r Rapid Technologie}, issn = {1614-0923}, url = {http://nbn-resolving.de/nbn:de:0009-2-44141}, year = {2016}, abstract = {The aim of this work was to perform a detailed investigation of the use of Selective Laser Melting (SLM) technology to process eutectic silver-copper alloy Ag 28 wt. \% Cu (also called AgCu28). The processing occurred with a Realizer SLM 50 desktop machine. The powder analysis (SEM-topography, EDX, particle distribution) was reported as well as the absorption rates for the near-infrared (NIR) spectrum. Microscope imaging showed the surface topography of the manufactured parts. Furthermore, microsections were conducted for the analysis of porosity. The Design of Experiments approach used the response surface method in order to model the statistical relationship between laser power, spot distance and pulse time.}, language = {en} } @inproceedings{KesslerBalcGebhardt2016, author = {Kessler, Julia and Balc, Nicolae and Gebhardt, Andreas}, title = {Basic research on lattice structures focused on the strut shape and welding beads}, series = {Physics Procedia}, volume = {Vol. 83}, booktitle = {Physics Procedia}, issn = {1875-3884}, doi = {10.1016/j.phpro.2016.08.086}, pages = {833 -- 838}, year = {2016}, language = {en} } @article{MichauxMatternKallweit2018, author = {Michaux, F. and Mattern, P. and Kallweit, Stephan}, title = {RoboPIV: how robotics enable PIV on a large industrial scale}, series = {Measurement Science and Technology}, volume = {29}, journal = {Measurement Science and Technology}, number = {7}, publisher = {IOP}, address = {Bristol}, issn = {1361-6501}, doi = {10.1088/1361-6501/aab5c1}, pages = {074009}, year = {2018}, abstract = {This work demonstrates how the interaction between particle image velocimetry (PIV) and robotics can massively increase measurement efficiency. The interdisciplinary approach is shown using the complex example of an automated, large scale, industrial environment: a typical automotive wind tunnel application. Both the high degree of flexibility in choosing the measurement region and the complete automation of stereo PIV measurements are presented. The setup consists of a combination of three robots, individually used as a 6D traversing unit for the laser illumination system as well as for each of the two cameras. Synchronised movements in the same reference frame are realised through a master-slave setup with a single interface to the user. By integrating the interface into the standard wind tunnel management system, a single measurement plane or a predefined sequence of several planes can be requested through a single trigger event, providing the resulting vector fields within minutes. In this paper, a brief overview on the demands of large scale industrial PIV and the existing solutions is given. Afterwards, the concept of RoboPIV is introduced as a new approach. In a first step, the usability of a selection of commercially available robot arms is analysed. The challenges of pose uncertainty and importance of absolute accuracy are demonstrated through comparative measurements, explaining the individual pros and cons of the analysed systems. Subsequently, the advantage of integrating RoboPIV directly into the existing wind tunnel management system is shown on basis of a typical measurement sequence. In a final step, a practical measurement procedure, including post-processing, is given by using real data and results. Ultimately, the benefits of high automation are demonstrated, leading to a drastic reduction in necessary measurement time compared to non-automated systems, thus massively increasing the efficiency of PIV measurements.}, language = {en} } @article{KunkelGebhardtMpofuetal.2018, author = {Kunkel, Maximilian Hugo and Gebhardt, Andreas and Mpofu, Khumbaulani and Kallweit, Stephan}, title = {Statistical assessment of mechanical properties of selective laser melted specimens of stainless steel}, series = {The International Journal of Advanced Manufacturing Technology}, volume = {98}, journal = {The International Journal of Advanced Manufacturing Technology}, number = {5-8}, publisher = {Springer}, address = {London}, issn = {0268-3768}, doi = {10.1007/s00170-018-2040-8}, pages = {1409 -- 1431}, year = {2018}, abstract = {The rail business is challenged by long product life cycles and a broad spectrum of assembly groups and single parts. When spare part obsolescence occurs, quick solutions are needed. A reproduction of obsolete parts is often connected to long waiting times and minimum lot quantities that need to be purchased and stored. Spare part storage is therefore challenged by growing stocks, bound capital and issues of part ageing. A possible solution could be a virtual storage of spare parts which will be 3D printed through additive manufacturing technologies in case of sudden demand. As mechanical properties of additive manufactured parts are neither guaranteed by machine manufacturers nor by service providers, the utilization of this relatively young technology is impeded and research is required to address these issues. This paper presents an examination of mechanical properties of specimens manufactured from stainless steel through the selective laser melting (SLM) process. The specimens were produced in multiple batches. This paper interrogates the question if the test results follow a normal distribution pattern and if mechanical property predictions can be made. The results will be put opposite existing threshold values provided as the industrial standard. Furthermore, probability predictions will be made in order to examine the potential of the SLM process to maintain state-of-the-art mechanical property requirements.}, language = {en} } @inproceedings{RieperGebhardtStucker2016, author = {Rieper, Harald and Gebhardt, Andreas and Stucker, Brent}, title = {Process parameters for Selective Laser Melting of AgCu7}, series = {DDMC, Fraunhofer Direct Digital Manufacturing Conference, 3}, booktitle = {DDMC, Fraunhofer Direct Digital Manufacturing Conference, 3}, publisher = {Fraunhofer-Verlag}, address = {Stuttgart}, isbn = {978-3-8396-1001-5}, pages = {171 -- 176}, year = {2016}, language = {en} } @incollection{FranzenSteckenPfaffetal.2019, author = {Franzen, Julian and Stecken, Jannis and Pfaff, Raphael and Kuhlenk{\"o}tter, Bernd}, title = {Using the Digital Shadow for a Prescriptive Optimization of Maintenance and Operation : The Locomotive in the Context of the Cyber-Physical System}, series = {Advances in Production, Logistics and Traffic}, booktitle = {Advances in Production, Logistics and Traffic}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-13535-5}, doi = {10.1007/978-3-030-13535-5_19}, pages = {265 -- 276}, year = {2019}, abstract = {In competition with other modes of transport, rail freight transport is looking for solutions to become more attractive. Short-term success can be achieved through the data-driven optimization of operations and maintenance as well as the application of novel strategies such as prescriptive maintenance. After introducing the concept of prescriptive maintenance, this paper aims to prove that vehicle-focused applications of this approach indeed have the potential to increase attractiveness. However, even greater advantages can be activated if data from the horizontal network of the vehicle is available. Drawing on the state of the art in research and technology in the field of cyber-physical systems (CPS) as well as digital twins and shadows, our work serves to design a system of systems for the horizontal interconnection of a rail vehicle and to conceptualize a draft for a digital twin of a locomotive.}, language = {en} } @inproceedings{BraunChengLaietal.2019, author = {Braun, Sebastian and Cheng, Chi-Tsun and Lai, Chow Yin and Wollert, J{\"o}rg}, title = {Microservice Architecture for Automation - Realization by the example of a model-factory's manufacturing execution system}, series = {Proceedings of the 23rd World Multi-Conference on Systemics, Cybernetics and Informatics: WMSCI 2019}, booktitle = {Proceedings of the 23rd World Multi-Conference on Systemics, Cybernetics and Informatics: WMSCI 2019}, pages = {33 -- 37}, year = {2019}, language = {en} } @inproceedings{GerhardsSchleserOttenetal.2019, author = {Gerhards, Benjamin and Schleser, Markus and Otten,, Christian and Schwarz, Alexander and Gebhardt, Andreas}, title = {Innovative Laser Beam Joining Technology for Additive Manufactured Parts}, series = {Conference Proceedings 72nd IIW Annual Assembly and International Conference, 7-12 July 2019, Bratislava}, booktitle = {Conference Proceedings 72nd IIW Annual Assembly and International Conference, 7-12 July 2019, Bratislava}, pages = {1 -- 8}, year = {2019}, language = {en} }