@inproceedings{UlmerMostafaWollert2022, author = {Ulmer, Jessica and Mostafa, Youssef and Wollert, J{\"o}rg F.}, title = {Digital Twin Academy: From Zero to Hero through individual learning experiences}, series = {Tagungsband AALE 2022: Wissenstransfer im Spannungsfeld von Autonomisierung und Fachkr{\"a}ftemangel}, booktitle = {Tagungsband AALE 2022: Wissenstransfer im Spannungsfeld von Autonomisierung und Fachkr{\"a}ftemangel}, isbn = {978-3-910103-00-9}, doi = {10.33968/2022.33}, url = {http://nbn-resolving.de/urn:nbn:de:bsz:l189-qucosa2-776097}, pages = {1 -- 9}, year = {2022}, abstract = {Digital twins are seen as one of the key technologies of Industry 4.0. Although many research groups focus on digital twins and create meaningful outputs, the technology has not yet reached a broad application in the industry. The main reasons for this imbalance are the complexity of the topic, the lack of specialists, and the unawareness of the twin opportunities. The project "Digital Twin Academy" aims to overcome these barriers by focusing on three actions: Building a digital twin community for discussion and exchange, offering multi-stage training for various knowledge levels, and implementing realworld use cases for deeper insights and guidance. In this work, we focus on creating a flexible learning platform that allows the user to select a training path adjusted to personal knowledge and needs. Therefore, a mix of basic and advanced modules is created and expanded by individual feedback options. The usage of personas supports the selection of the appropriate modules.}, language = {en} } @inproceedings{EvansBraunUlmeretal.2022, author = {Evans, Benjamin and Braun, Sebastian and Ulmer, Jessica and Wollert, J{\"o}rg F.}, title = {AAS implementations - current problems and solutions}, series = {20th International Conference on Mechatronics - Mechatronika (ME)}, booktitle = {20th International Conference on Mechatronics - Mechatronika (ME)}, publisher = {IEEE}, address = {New York, NY}, isbn = {978-1-6654-1040-3}, doi = {10.1109/ME54704.2022.9982933}, pages = {6 Seiten}, year = {2022}, abstract = {The fourth industrial revolution presents a multitude of challenges for industries, one of which being the increased flexibility required of manufacturing lines as a result of increased consumer demand for individualised products. One solution to tackle this challenge is the digital twin, more specifically the standardised model of a digital twin also known as the asset administration shell. The standardisation of an industry wide communications tool is a critical step in enabling inter-company operations. This paper discusses the current state of asset administration shells, the frameworks used to host them and their problems that need to be addressed. To tackle these issues, we propose an event-based server capable of drastically reducing response times between assets and asset administration shells and a multi-agent system used for the orchestration and deployment of the shells in the field.}, language = {en} } @inproceedings{EnningHilgers2023, author = {Enning, Manfred and Hilgers, Rudolf}, title = {Die Assistierte Bremsprobe als Br{\"u}cke zur Vollautomatisierung des Schieneng{\"u}terverkehrs}, series = {IRSA 2023: Tagungsband, Proceedings}, booktitle = {IRSA 2023: Tagungsband, Proceedings}, editor = {Nießen, Nils and Schindler, Christian}, publisher = {RWTH Aachen}, address = {Aachen}, doi = {10.18154/RWTH-2024-00257}, pages = {60 -- 75}, year = {2023}, language = {de} } @inproceedings{MichauxBrunnWillertetal.2024, author = {Michaux, Frank and Brunn, Andr{\´e} and Willert, Christian and Kallweit, Stephan}, title = {Automatic setup and calibration of a Robotic-PIV system using fiducial markers}, series = {21st International Symposium on Application of Laser and Imaging Techniques to Fluid Mechanics}, booktitle = {21st International Symposium on Application of Laser and Imaging Techniques to Fluid Mechanics}, doi = {10.55037/lxlaser.21st.163}, pages = {12 Seiten}, year = {2024}, abstract = {The use of industrial robots allows the precise manipulation of all components necessary for setting up a large-scale particle image velocimetry (PIV) system. The known internal calibration matrix of the cameras in combination with the actual pose of the industrial robots and the calculated transform from the fiducial markers to camera coordinates allow the precise positioning of the individual PIV components according to the measurement demands. In addition, the complete calibration procedure for generating the external camera matrix and the mapping functions for e.g. dewarping the stereo images can be automatically determined without further user interaction and thus the degree of automation can be extended to nearly 100\%. This increased degree of automation expands the applications range of PIV systems, in particular for measurement tasks with severe time constraints.}, language = {en} }