@inproceedings{DiltheySchleserPuterman2007, author = {Dilthey, Ulrich and Schleser, Markus and Puterman, Moshe}, title = {Investigation and improvement of concrete reinforced with epoxy impregnated fabrics}, series = {Proceedings / 12th International Congress Polymers in Concrete, ICPIC 07, chuncheon, Korea, Sept. 26. - 28., 2007}, booktitle = {Proceedings / 12th International Congress Polymers in Concrete, ICPIC 07, chuncheon, Korea, Sept. 26. - 28., 2007}, publisher = {Kangwoon National Univ.}, address = {Chancheon}, isbn = {978-89-9600450-9}, pages = {725 -- 733}, year = {2007}, language = {en} } @article{EngemannCoenenDawaretal.2021, author = {Engemann, Heiko and C{\"o}nen, Patrick and Dawar, Harshal and Du, Shengzhi and Kallweit, Stephan}, title = {A robot-assisted large-scale inspection of wind turbine blades in manufacturing using an autonomous mobile manipulator}, series = {Applied Sciences}, volume = {11}, journal = {Applied Sciences}, number = {19}, publisher = {MDPI}, address = {Basel}, issn = {2076-3417}, doi = {10.3390/app11199271}, pages = {1 -- 22}, year = {2021}, abstract = {Wind energy represents the dominant share of renewable energies. The rotor blades of a wind turbine are typically made from composite material, which withstands high forces during rotation. The huge dimensions of the rotor blades complicate the inspection processes in manufacturing. The automation of inspection processes has a great potential to increase the overall productivity and to create a consistent reliable database for each individual rotor blade. The focus of this paper is set on the process of rotor blade inspection automation by utilizing an autonomous mobile manipulator. The main innovations include a novel path planning strategy for zone-based navigation, which enables an intuitive right-hand or left-hand driving behavior in a shared human-robot workspace. In addition, we introduce a new method for surface orthogonal motion planning in connection with large-scale structures. An overall execution strategy controls the navigation and manipulation processes of the long-running inspection task. The implemented concepts are evaluated in simulation and applied in a real-use case including the tip of a rotor blade form.}, language = {en} } @inproceedings{FerreinKallweitScholletal.2015, author = {Ferrein, Alexander and Kallweit, Stephan and Scholl, Ingrid and Reichert, Walter}, title = {Learning to Program Mobile Robots in the ROS Summer School Series}, series = {Proceedings 6th International Conference on Robotics in Education (RiE 15)}, booktitle = {Proceedings 6th International Conference on Robotics in Education (RiE 15)}, pages = {6 S.}, year = {2015}, abstract = {The main objective of our ROS Summer School series is to introduce MA level students to program mobile robots with the Robot Operating System (ROS). ROS is a robot middleware that is used my many research institutions world-wide. Therefore, many state-of-the-art algorithms of mobile robotics are available in ROS and can be deployed very easily. As a basic robot platform we deploy a 1/10 RC cart that is wquipped with an Arduino micro-controller to control the servo motors, and an embedded PC that runs ROS. In two weeks, participants get to learn the basics of mobile robotics hands-on. We describe our teaching concepts and our curriculum and report on the learning success of our students.}, language = {en} } @misc{Gebhardt2005, author = {Gebhardt, Andreas}, title = {Short course on rapid prototyping}, year = {2005}, abstract = {Rapid Prototyping Technology: Types of models, rapid prototyping processes, prototyper Fundamentals of rapid prototyping Industrial rapid prototyping technology: Stereolithography, (Selective) laser sintering ((S)LS), Layer laminate manufacturing (LLM), Fused layer modeling (FLM), Three dimensional printing (3DP)}, language = {en} } @inproceedings{Gebhardt2006, author = {Gebhardt, Andreas}, title = {Technology Diffusion through a Multi-Level Technology Transfer Infrastructure. Contribution to the 1st. All Africa Technology Diffusion Conference Boksburg, South Africa June 12th - 14th 2006}, year = {2006}, abstract = {Table of contents 1. Introduction 2. Multi-level Technology Transfer Infrastructure 2.1 Level 1: University Education - Encourage the Idea of becoming an Entrepreneur 2.2 Level 2: Post Graduate Education - Improve your skills and focus it on a product family. 2.3 Level 3: Birth of a Company - Focus your skills on a product and a market segment. 2.4 Level 4: Ready to stand alone - Set up your own business 2.5 Level 5: Grow to be Strong - Develop your business 2.6 Level 6: Competitive and independent - Stay innovative. 3. Samples 3.1 Sample 1: Laser Processing and Consulting Centre, LBBZ 3.2 Sample 2: Prototyping Centre, CP 4. Funding - Waste money or even lost Money? 5. Conclusion}, subject = {Technologietransfer}, language = {en} } @article{Gebhardt2006, author = {Gebhardt, Andreas}, title = {Generative Manufacturing of Ceramic Parts "Vision Rapid Prototyping"}, year = {2006}, abstract = {Table of Contents Introduction 1. Generative Manufacturing Processes 2. Classification of Generative Manufacturing Processes 3. Application of Generative Processes on the Fabrication of Ceramic Parts 3.1 Extrusion 3.2 3D-Printing 3.3 Sintering - Laser Sintering 3.4 Layer-Laminate Processes 3.5 Stereolithography (sometimes written: Stereo Lithography) 4. Layer Milling 5. Conclusion - Vision}, subject = {Rapid prototyping}, language = {en} } @inproceedings{GregorioFatigatiKallweit2015, author = {Gregorio, Fabrizio de and Fatigati, Giovanni and Kallweit, Stephan}, title = {Tiltrotor airframe flow field characterization by SPIV}, series = {11th International Symposium on Partivle Image Velocimetry - PIV15 , Santa Barbara, California, Sept 14-16, 2015}, booktitle = {11th International Symposium on Partivle Image Velocimetry - PIV15 , Santa Barbara, California, Sept 14-16, 2015}, pages = {15 S.}, year = {2015}, language = {en} } @misc{Kaemper2007, author = {K{\"a}mper, Klaus-Peter}, title = {Lecture notes Sensors and Actuators}, year = {2007}, abstract = {Kennwortgesch{\"u}tzter Zugang nur f{\"u}r Studierende bei Prof. Dr. Klaus-Peter K{\"a}mper. Wintersemester 2007/2008. Version vom 30.08.2007. 472 Seiten (pdf-Format)}, subject = {Sensor}, language = {en} } @misc{Kaemper2008, author = {K{\"a}mper, Klaus-Peter}, title = {Lecture notes Sensors and Actuators WS 2008/2009}, year = {2008}, abstract = {Password necessarily. Access only for Students by Prof. Dr. Klaus-Peter K{\"a}mper. Winter semester 2008/2009. 488 pages (pdf) Contents 1. Introduction 2. Introduction to Sensors 3. Introduction to Microfabrication 4. Pressure Sensors 5. Acceleration Sensors 6. Angular Rate Sensors 7. Position Sensors 8. Flow Sensors 9. Piezoelectric Actuators 10. Magnetostrictive Actuators 11. Actuators based on Shape Memory Alloys 12. Actuators based on Electrorheological Fluids 13. Actuators based on Magnetorheological Fluids 14. Index}, subject = {Sensor}, language = {en} } @article{KaemperPicardBrilletal.2003, author = {K{\"a}mper, Klaus-Peter and Picard, Antoni and Brill, Manfred and Cassel, Detlev and Jentsch, Andreas and Merten, Sabine and Rollwa, Markus}, title = {The Virtual Clean Room - a new tool in teaching MST process technologies}, year = {2003}, abstract = {The Virtual Clean Room - a new tool in teaching MST process technologies University education in high-technology fields like MST is not complete without intensive laboratory sessions. Students cannot fully grasp the complexity and the special problems related to the manufacturing of microsystems without a thorough hands-on experience in a MST clean room.}, subject = {Virtuelle Maschine}, language = {en} }