@inproceedings{FerreinKallweitScholletal.2015, author = {Ferrein, Alexander and Kallweit, Stephan and Scholl, Ingrid and Reichert, Walter}, title = {Learning to Program Mobile Robots in the ROS Summer School Series}, series = {Proceedings 6th International Conference on Robotics in Education (RiE 15)}, booktitle = {Proceedings 6th International Conference on Robotics in Education (RiE 15)}, pages = {6 S.}, year = {2015}, abstract = {The main objective of our ROS Summer School series is to introduce MA level students to program mobile robots with the Robot Operating System (ROS). ROS is a robot middleware that is used my many research institutions world-wide. Therefore, many state-of-the-art algorithms of mobile robotics are available in ROS and can be deployed very easily. As a basic robot platform we deploy a 1/10 RC cart that is wquipped with an Arduino micro-controller to control the servo motors, and an embedded PC that runs ROS. In two weeks, participants get to learn the basics of mobile robotics hands-on. We describe our teaching concepts and our curriculum and report on the learning success of our students.}, language = {en} } @inproceedings{AlhwarinFerreinGebhardtetal.2015, author = {Alhwarin, Faraj and Ferrein, Alexander and Gebhardt, Andreas and Kallweit, Stephan and Scholl, Ingrid and Tedjasukmana, Osmond Sanjaya}, title = {Improving additive manufacturing by image processing and robotic milling}, series = {2015 IEEE International Conference on Automation Science and Engineering (CASE), Aug 24-28, 2015 Gothenburg, Sweden}, booktitle = {2015 IEEE International Conference on Automation Science and Engineering (CASE), Aug 24-28, 2015 Gothenburg, Sweden}, doi = {10.1109/CoASE.2015.7294217}, pages = {924 -- 929}, year = {2015}, language = {en} } @inproceedings{SchleupenEngemannBagherietal.2017, author = {Schleupen, Josef and Engemann, Heiko and Bagheri, Mohsen and Kallweit, Stephan and Dahmann, Peter}, title = {Developing a climbing maintenance robot for tower and rotor blade service of wind turbines}, series = {Advances in Robot Design and Intelligent Control : Proceedings of the 25th Conference on Robotics in Alpe-Adria-Danube Region (RAAD16)}, booktitle = {Advances in Robot Design and Intelligent Control : Proceedings of the 25th Conference on Robotics in Alpe-Adria-Danube Region (RAAD16)}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-49058-8}, doi = {10.1007/978-3-319-49058-8_34}, pages = {310 -- 319}, year = {2017}, language = {en} } @inproceedings{EngemannWiesenKallweitetal.2018, author = {Engemann, Heiko and Wiesen, Patrick and Kallweit, Stephan and Deshpande, Harshavardhan and Schleupen, Josef}, title = {Autonomous mobile manipulation using ROS}, series = {Advances in Service and Industrial Robotics}, booktitle = {Advances in Service and Industrial Robotics}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-61276-8}, doi = {10.1007/978-3-319-61276-8_43}, pages = {389 -- 401}, year = {2018}, language = {en} } @inproceedings{WiesenEngemannLimpertetal.2018, author = {Wiesen, Patrick and Engemann, Heiko and Limpert, Nicolas and Kallweit, Stephan}, title = {Learning by Doing - Mobile Robotics in the FH Aachen ROS Summer School}, series = {European Robotics Forum 2018, TRROS18 Workshop}, booktitle = {European Robotics Forum 2018, TRROS18 Workshop}, pages = {47 -- 58}, year = {2018}, language = {en} } @inproceedings{UlmerBraunChengetal.2021, author = {Ulmer, Jessica and Braun, Sebastian and Cheng, Chi-Tsun and Dowey, Steve and Wollert, J{\"o}rg}, title = {Adapting Augmented Reality Systems to the users' needs using Gamification and error solving methods}, series = {Procedia CIRP}, volume = {104}, booktitle = {Procedia CIRP}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2212-8271}, doi = {10.1016/j.procir.2021.11.024}, pages = {140 -- 145}, year = {2021}, abstract = {Animations of virtual items in AR support systems are typically predefined and lack interactions with dynamic physical environments. AR applications rarely consider users' preferences and do not provide customized spontaneous support under unknown situations. This research focuses on developing adaptive, error-tolerant AR systems based on directed acyclic graphs and error resolving strategies. Using this approach, users will have more freedom of choice during AR supported work, which leads to more efficient workflows. Error correction methods based on CAD models and predefined process data create individual support possibilities. The framework is implemented in the Industry 4.0 model factory at FH Aachen.}, language = {en} } @inproceedings{ChavezBermudezWollert2022, author = {Chavez Bermudez, Victor Francisco and Wollert, J{\"o}rg}, title = {10BASE-T1L industry 4.0 smart switch for field devices based on IO-Link}, series = {2022 IEEE 18th International Conference on Factory Communication Systems (WFCS)}, booktitle = {2022 IEEE 18th International Conference on Factory Communication Systems (WFCS)}, publisher = {IEEE}, isbn = {978-1-6654-1086-1}, doi = {10.1109/WFCS53837.2022.9779176}, pages = {4 Seiten}, year = {2022}, abstract = {The recent amendment to the Ethernet physical layer known as the IEEE 802.3cg specification, allows to connect devices up to a distance of one kilometer and delivers a maximum of 60 watts of power over a twisted pair of wires. This new standard, also known as 10BASE-TIL, promises to overcome the limits of current physical layers used for field devices and bring them a step closer to Ethernet-based applications. The main advantage of 10BASE- TIL is that it can deliver power and data over the same line over a long distance, where traditional solutions (e.g., CAN, IO-Link, HART) fall short and cannot match its 10 Mbps bandwidth. Due to its recentness, IOBASE- TIL is still not integrated into field devices and it has been less than two years since silicon manufacturers released the first Ethernet-PHY chips. In this paper, we present a design proposal on how field devices could be integrated into a IOBASE-TIL smart switch that allows plug-and-play connectivity for sensors and actuators and is compliant with the Industry 4.0 vision. Instead of presenting a new field-level protocol for this work, we have decided to adopt the IO-Link specification which already includes a plug-and-play approach with features such as diagnosis and device configuration. The main objective of this work is to explore how field devices could be integrated into 10BASE-TIL Ethernet, its adaption with a well-known protocol, and its integration with Industry 4.0 technologies.}, language = {en} } @inproceedings{UlmerBraunChengetal.2022, author = {Ulmer, Jessica and Braun, Sebastian and Cheng, Chi-Tsun and Dowey, Steve and Wollert, J{\"o}rg}, title = {Usage of digital twins for gamification applications in manufacturing}, series = {Procedia CIRP}, volume = {107}, booktitle = {Procedia CIRP}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2212-8271}, doi = {10.1016/j.procir.2022.05.044}, pages = {675 -- 680}, year = {2022}, abstract = {Gamification applications are on the rise in the manufacturing sector to customize working scenarios, offer user-specific feedback, and provide personalized learning offerings. Commonly, different sensors are integrated into work environments to track workers' actions. Game elements are selected according to the work task and users' preferences. However, implementing gamified workplaces remains challenging as different data sources must be established, evaluated, and connected. Developers often require information from several areas of the companies to offer meaningful gamification strategies for their employees. Moreover, work environments and the associated support systems are usually not flexible enough to adapt to personal needs. Digital twins are one primary possibility to create a uniform data approach that can provide semantic information to gamification applications. Frequently, several digital twins have to interact with each other to provide information about the workplace, the manufacturing process, and the knowledge of the employees. This research aims to create an overview of existing digital twin approaches for digital support systems and presents a concept to use digital twins for gamified support and training systems. The concept is based upon the Reference Architecture Industry 4.0 (RAMI 4.0) and includes information about the whole life cycle of the assets. It is applied to an existing gamified training system and evaluated in the Industry 4.0 model factory by an example of a handle mounting.}, language = {en} } @inproceedings{UlmerBraunChengetal.2020, author = {Ulmer, Jessica and Braun, Sebastian and Cheng, Chi-Tsun and Dowey, Steve and Wollert, J{\"o}rg}, title = {Gamified Virtual Reality Training Environment for the Manufacturing Industry}, doi = {10.1109/ME49197.2020.9286661}, pages = {1 -- 6}, year = {2020}, language = {de} } @inproceedings{EvansBraunUlmeretal.2022, author = {Evans, Benjamin and Braun, Sebastian and Ulmer, Jessica and Wollert, J{\"o}rg}, title = {AAS implementations - current problems and solutions}, series = {20th International Conference on Mechatronics - Mechatronika (ME)}, booktitle = {20th International Conference on Mechatronics - Mechatronika (ME)}, publisher = {IEEE}, isbn = {978-1-6654-1040-3}, doi = {10.1109/ME54704.2022.9982933}, pages = {6 Seiten}, year = {2022}, abstract = {The fourth industrial revolution presents a multitude of challenges for industries, one of which being the increased flexibility required of manufacturing lines as a result of increased consumer demand for individualised products. One solution to tackle this challenge is the digital twin, more specifically the standardised model of a digital twin also known as the asset administration shell. The standardisation of an industry wide communications tool is a critical step in enabling inter-company operations. This paper discusses the current state of asset administration shells, the frameworks used to host them and their problems that need to be addressed. To tackle these issues, we propose an event-based server capable of drastically reducing response times between assets and asset administration shells and a multi-agent system used for the orchestration and deployment of the shells in the field.}, language = {en} } @inproceedings{ChavezBermudezCruzCastanonRuchayetal.2022, author = {Chavez Bermudez, Victor Francisco and Cruz Castanon, Victor Fernando and Ruchay, Marco and Wollert, J{\"o}rg}, title = {Rapid prototyping framework for automation applications based on IO-Link}, series = {Tagungsband AALE 2022}, booktitle = {Tagungsband AALE 2022}, editor = {Leipzig, Hochschule f{\"u}r Technik, Wirtschaft und Kultur}, address = {Leipzig}, isbn = {978-3-910103-00-9}, doi = {10.33968/2022.28}, pages = {8 Seiten}, year = {2022}, abstract = {The development of protype applications with sensors and actuators in the automation industry requires tools that are independent of manufacturer, and are flexible enough to be modified or extended for any specific requirements. Currently, developing prototypes with industrial sensors and actuators is not straightforward. First of all, the exchange of information depends on the industrial protocol that these devices have. Second, a specific configuration and installation is done based on the hardware that is used, such as automation controllers or industrial gateways. This means that the development for a specific industrial protocol, highly depends on the hardware and the software that vendors provide. In this work we propose a rapid-prototyping framework based on Arduino to solve this problem. For this project we have focused to work with the IO-Link protocol. The framework consists of an Arduino shield that acts as the physical layer, and a software that implements the IO-Link Master protocol. The main advantage of such framework is that an application with industrial devices can be rapid-prototyped with ease as its vendor independent, open-source and can be ported easily to other Arduino compatible boards. In comparison, a typical approach requires proprietary hardware, is not easy to port to another system and is closed-source.}, language = {en} }