@book{Gebhardt2011, author = {Gebhardt, Andreas}, title = {Understanding Additive Manufacturing : Rapid Prototyping - Rapid Tooling - Rapid Manufacturing}, publisher = {Hanser}, address = {M{\"u}nchen}, isbn = {978-3-446-42552-1}, pages = {VIII, 164 S. : farb. Ill.}, year = {2011}, language = {en} } @inproceedings{GaoBabilonPfaffetal.2018, author = {Gao, H. and Babilon, Katharina and Pfaff, Raphael and Gan, F. and Reich, A.}, title = {Model of wheel-rail contact for sanding and adhesion enhancement}, series = {Proceedings of the 11th International Conference on Contact Mechanics and Wear of Rail/wheel Systems, CM 2018}, booktitle = {Proceedings of the 11th International Conference on Contact Mechanics and Wear of Rail/wheel Systems, CM 2018}, isbn = {978-946186963-0}, pages = {314 -- 321}, year = {2018}, language = {en} } @inproceedings{GabrielliMathiesGrossmannetal.2015, author = {Gabrielli, Roland Antonius and Mathies, Johannes and Großmann, Agnes and Herdrich, Georg and Fasoulas, Stefanos and Middendorf, Peter and Fateri, Miranda and Gebhardt, Andreas}, title = {Space Propulsion Considerations for a Lunar Take Off Industry Based on Regolith}, series = {International Symposium on Space Technology and Science (ISTS). July 2015, Kobe, Japan}, booktitle = {International Symposium on Space Technology and Science (ISTS). July 2015, Kobe, Japan}, year = {2015}, language = {en} } @incollection{FrotscherGossmannRaatschenetal.2015, author = {Frotscher, Ralf and Goßmann, Matthias and Raatschen, Hans-J{\"u}rgen and Temiz Artmann, Ayseg{\"u}l and Staat, Manfred}, title = {Simulation of cardiac cell-seeded membranes using the edge-based smoothed FEM}, series = {Shell and membrane theories in mechanics and biology. (Advanced structured materials ; 45)}, booktitle = {Shell and membrane theories in mechanics and biology. (Advanced structured materials ; 45)}, publisher = {Springer}, address = {Heidelberg}, isbn = {978-3-319-02534-6 ; 978-3-319-02535-3}, pages = {187 -- 212}, year = {2015}, abstract = {We present an electromechanically coupled Finite Element model for cardiac tissue. It bases on the mechanical model for cardiac tissue of Hunter et al. that we couple to the McAllister-Noble-Tsien electrophysiological model of purkinje fibre cells. The corresponding system of ordinary differential equations is implemented on the level of the constitutive equations in a geometrically and physically nonlinear version of the so-called edge-based smoothed FEM for plates. Mechanical material parameters are determined from our own pressure-deflection experimental setup. The main purpose of the model is to further examine the experimental results not only on mechanical but also on electrophysiological level down to ion channel gates. Moreover, we present first drug treatment simulations and validate the model with respect to the experiments.}, language = {en} } @article{FrohbergAnik1983, author = {Frohberg, Martin G. and Anik, Sabri}, title = {The application of a quadi-chemical lattice model to binary metallic solvents containing oxygen in higher concentrations}, series = {Zeitschrift f{\"u}r Metallkunde}, volume = {74}, journal = {Zeitschrift f{\"u}r Metallkunde}, number = {10}, issn = {0044-3093}, pages = {665 -- 666}, year = {1983}, language = {en} } @article{FrohbergAnik1985, author = {Frohberg, Martin G. and Anik, Sabri}, title = {The calculation of component activities of binary metallic melts from their gas solubilities}, series = {Zeitschrift f{\"u}r Metallkunde}, volume = {76}, journal = {Zeitschrift f{\"u}r Metallkunde}, number = {2}, issn = {0044-3093}, pages = {135 -- 137}, year = {1985}, language = {en} } @article{FrohbergAnik1985, author = {Frohberg, Martin G. and Anik, Sabri}, title = {Thermodynamic relations between component activities and gas solubilities in binary metallic systems}, series = {Berichte der Bunsengesellschaft f{\"u}r physikalische Chemie}, volume = {89}, journal = {Berichte der Bunsengesellschaft f{\"u}r physikalische Chemie}, number = {2}, issn = {0940-483X}, pages = {130 -- 134}, year = {1985}, language = {en} } @article{FranzenPindersPfaffetal.2018, author = {Franzen, Julius and Pinders, Erik and Pfaff, Raphael and Enning, Manfred}, title = {RailCrowd's virtual fleets: Make most of your asset data}, series = {Deine Bahn}, journal = {Deine Bahn}, number = {9}, publisher = {Bahn-Fachverlag}, address = {Berlin}, issn = {0948-7263}, pages = {11 -- 13}, year = {2018}, abstract = {For smaller railway operators or those with a diverse fleet, it can be difficult to collect sufficient data to improve maintenance programs. At the same time, new rules such as entity in charge of maintenance - ECM - regulations impose an additional workload by requiring a dedicated maintenance management system and specific reports. The RailCrowd platform sets out to facilitate compliance with ECM and similar regulations while at the same time pooling anonymised fleet data across operators to form virtual fleets, providing greater data insights.}, language = {en} } @incollection{FranzenSteckenPfaffetal.2019, author = {Franzen, Julian and Stecken, Jannis and Pfaff, Raphael and Kuhlenk{\"o}tter, Bernd}, title = {Using the Digital Shadow for a Prescriptive Optimization of Maintenance and Operation : The Locomotive in the Context of the Cyber-Physical System}, series = {Advances in Production, Logistics and Traffic}, booktitle = {Advances in Production, Logistics and Traffic}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-13535-5}, doi = {10.1007/978-3-030-13535-5_19}, pages = {265 -- 276}, year = {2019}, abstract = {In competition with other modes of transport, rail freight transport is looking for solutions to become more attractive. Short-term success can be achieved through the data-driven optimization of operations and maintenance as well as the application of novel strategies such as prescriptive maintenance. After introducing the concept of prescriptive maintenance, this paper aims to prove that vehicle-focused applications of this approach indeed have the potential to increase attractiveness. However, even greater advantages can be activated if data from the horizontal network of the vehicle is available. Drawing on the state of the art in research and technology in the field of cyber-physical systems (CPS) as well as digital twins and shadows, our work serves to design a system of systems for the horizontal interconnection of a rail vehicle and to conceptualize a draft for a digital twin of a locomotive.}, language = {en} } @article{FrankoDuKallweitetal.2020, author = {Franko, Josef and Du, Shengzhi and Kallweit, Stephan and Duelberg, Enno Sebastian and Engemann, Heiko}, title = {Design of a Multi-Robot System for Wind Turbine Maintenance}, series = {Energies}, volume = {13}, journal = {Energies}, number = {10}, publisher = {MDPI}, address = {Basel}, issn = {1996-1073}, doi = {10.3390/en13102552}, pages = {Article 2552}, year = {2020}, abstract = {The maintenance of wind turbines is of growing importance considering the transition to renewable energy. This paper presents a multi-robot-approach for automated wind turbine maintenance including a novel climbing robot. Currently, wind turbine maintenance remains a manual task, which is monotonous, dangerous, and also physically demanding due to the large scale of wind turbines. Technical climbers are required to work at significant heights, even in bad weather conditions. Furthermore, a skilled labor force with sufficient knowledge in repairing fiber composite material is rare. Autonomous mobile systems enable the digitization of the maintenance process. They can be designed for weather-independent operations. This work contributes to the development and experimental validation of a maintenance system consisting of multiple robotic platforms for a variety of tasks, such as wind turbine tower and rotor blade service. In this work, multicopters with vision and LiDAR sensors for global inspection are used to guide slower climbing robots. Light-weight magnetic climbers with surface contact were used to analyze structure parts with non-destructive inspection methods and to locally repair smaller defects. Localization was enabled by adapting odometry for conical-shaped surfaces considering additional navigation sensors. Magnets were suitable for steel towers to clamp onto the surface. A friction-based climbing ring robot (SMART— Scanning, Monitoring, Analyzing, Repair and Transportation) completed the set-up for higher payload. The maintenance period could be extended by using weather-proofed maintenance robots. The multi-robot-system was running the Robot Operating System (ROS). Additionally, first steps towards machine learning would enable maintenance staff to use pattern classification for fault diagnosis in order to operate safely from the ground in the future.}, language = {en} } @inproceedings{FerreinSchifferKallweit2018, author = {Ferrein, Alexander and Schiffer, Stefan and Kallweit, Stephan}, title = {The ROSIN Education Concept - Fostering ROS Industrial-Related Robotics Education in Europe}, series = {ROBOT 2017: Third Iberian Robotics Conference}, booktitle = {ROBOT 2017: Third Iberian Robotics Conference}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-70836-2}, doi = {10.1007/978-3-319-70836-2_31}, pages = {370 -- 381}, year = {2018}, language = {en} } @inproceedings{FerreinKallweitScholletal.2015, author = {Ferrein, Alexander and Kallweit, Stephan and Scholl, Ingrid and Reichert, Walter}, title = {Learning to Program Mobile Robots in the ROS Summer School Series}, series = {Proceedings 6th International Conference on Robotics in Education (RiE 15)}, booktitle = {Proceedings 6th International Conference on Robotics in Education (RiE 15)}, pages = {6 S.}, year = {2015}, abstract = {The main objective of our ROS Summer School series is to introduce MA level students to program mobile robots with the Robot Operating System (ROS). ROS is a robot middleware that is used my many research institutions world-wide. Therefore, many state-of-the-art algorithms of mobile robotics are available in ROS and can be deployed very easily. As a basic robot platform we deploy a 1/10 RC cart that is wquipped with an Arduino micro-controller to control the servo motors, and an embedded PC that runs ROS. In two weeks, participants get to learn the basics of mobile robotics hands-on. We describe our teaching concepts and our curriculum and report on the learning success of our students.}, language = {en} } @inproceedings{FerreinKallweitLautermann2012, author = {Ferrein, Alexander and Kallweit, Stephan and Lautermann, Mark}, title = {Towards an autonomous pilot system for a tunnel boring machine}, series = {5th Robotics and Mechatronics Conference of South Africa (ROBMECH) : 26 - 27 November 2012 ; CSIR International Conference Centre Gauteng South Africa}, booktitle = {5th Robotics and Mechatronics Conference of South Africa (ROBMECH) : 26 - 27 November 2012 ; CSIR International Conference Centre Gauteng South Africa}, publisher = {IEEE}, address = {Piscataway, NJ}, isbn = {978-1-4673-5183-6}, year = {2012}, language = {en} } @article{FeldmannPakGessleretal.2006, author = {Feldmann, Markus and Pak, Daniel and Geßler, Achim and Dilthey, Ulrich and Schleser, Markus}, title = {Bonded connections for textile reinforced concrete structures}, series = {Cailiao-gongcheng = Journal of materials engineering}, journal = {Cailiao-gongcheng = Journal of materials engineering}, number = {Special iss.}, issn = {1001-4381}, pages = {123 -- 127}, year = {2006}, language = {en} } @article{FateriHoetterGebhardt2012, author = {Fateri, Miranda and H{\"o}tter, Jan-Steffen and Gebhardt, Andreas}, title = {Experimental and Theoretical Investigation of Buckling Deformation of Fabricated Objects by Selective Laser Melting}, series = {Physics Procedia}, volume = {39}, journal = {Physics Procedia}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1875-3892}, doi = {10.1016/j.phpro.2012.10.062}, pages = {464 -- 470}, year = {2012}, abstract = {Although Selective Laser Melting (SLM) process is an innovative manufacturing method, there are challenges such as inferior mechanical properties of fabricated objects. Regarding this, buckling deformation which is caused by thermal stress is one of the undesired mechanical properties which must be alleviated. As buckling deformation is more observable in hard to process materials, silver is selected to be studied theoretically and experimentally for this paper. Different scanning strategies are utilized and a Finite Element Method (FEM) is applied to calculate the temperature gradient in order to determine its effect on the buckling deformation of the objects from experiments.}, language = {en} } @article{FateriGebhardtThuemmleretal.2014, author = {Fateri, Miranda and Gebhardt, Andreas and Th{\"u}mmler, Stefan and Thurn, Laura}, title = {Experimental investigation on selective laser melting of glass}, series = {Physics procedia : 8th International Conference on Laser Assisted Net Shape Engineering LANE 2014}, volume = {56 (2014)}, journal = {Physics procedia : 8th International Conference on Laser Assisted Net Shape Engineering LANE 2014}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1875-3892 (E-Journal); 1875-3884 (Print)}, doi = {10.1016/j.phpro.2014.08.118}, pages = {357 -- 364}, year = {2014}, language = {en} } @inproceedings{FateriGebhardtRenftle2015, author = {Fateri, Miranda and Gebhardt, Andreas and Renftle, Georg}, title = {Additive Manufacturing of Drainage Segments for Cooling System of Crucibles Melting Furnaces}, series = {International Conference and Expo on Advanced Ceramics and Composites, (ICACC). January 2015, Florida, USA}, booktitle = {International Conference and Expo on Advanced Ceramics and Composites, (ICACC). January 2015, Florida, USA}, pages = {9 S.}, year = {2015}, abstract = {The cooling process in induction based crucible melting furnaces for Industrial applications is one of the important and challenging factors in production and safety engineering. Accordingly, proper implementation of the cooling system of the furnace using optimum cooling guides and fail-safe features are critical in order to improve the safety of the process. Regarding this, manufacturing of porous material with high electrical isolation for the drainage segments of the cooling channels is examined in this study. Consequently, various geometries with different porosities using glass and ceramic powder are fabricated using Selective Laser Sintering (SLS) process. The manufactured parts are examined in a prototype furnace testing and the feasibility of the SLS manufacturing of parts for this application is discussed.}, language = {en} } @inproceedings{FateriGebhardtRenftle2015, author = {Fateri, Miranda and Gebhardt, Andreas and Renftle, Georg}, title = {Additive manufacturing of drainage segments for cooling system of crucible melting furnaces}, series = {Advanced Processing and Manufacturing Technologies for Structural and Multifunctional Materials II, International Symposium on Advanced Processing and Manufacturing Technologies for Structural and Multifunctional Materials, ICACC 15, 39th International Conference on Advanced Ceramics and Composites, Daytona Beach, FL, US, Jan 25-30, 2015}, booktitle = {Advanced Processing and Manufacturing Technologies for Structural and Multifunctional Materials II, International Symposium on Advanced Processing and Manufacturing Technologies for Structural and Multifunctional Materials, ICACC 15, 39th International Conference on Advanced Ceramics and Composites, Daytona Beach, FL, US, Jan 25-30, 2015}, publisher = {Wiley}, address = {Hoboken}, issn = {0196-6219}, doi = {10.1002/9781119211662.ch14}, pages = {123 -- 131}, year = {2015}, language = {en} } @inproceedings{FateriGebhardtKhosravi2013, author = {Fateri, Miranda and Gebhardt, Andreas and Khosravi, Maziar}, title = {Experimental investigation of selective laser melting of lunar regolith for in-situ applications}, series = {ASME 2013 International Mechanical Engineering Congress and Exposition : San Diego, California, USA, November 15-21, 2013. Vol. 2A: Advanced manufacturing}, booktitle = {ASME 2013 International Mechanical Engineering Congress and Exposition : San Diego, California, USA, November 15-21, 2013. Vol. 2A: Advanced manufacturing}, publisher = {ASME}, organization = {American Society of Mechanical Engineers}, isbn = {978-0-7918-5618-5}, pages = {V02AT02A008}, year = {2013}, language = {en} } @inproceedings{FateriGebhardtGabriellietal.2015, author = {Fateri, Miranda and Gebhardt, Andreas and Gabrielli, Roland Antonius and Herdrich, Georg and Fasoulas, Stefanos and Großmann, Agnes and Schnauffer, Peter and Middendorf, Peter}, title = {Additive Manufacturing of Lunar Regolith for Extra-terrestrial Industry Plant}, series = {International Symposium on Space Technology and Science (ICTS). July 2015, Kobe, Japan}, booktitle = {International Symposium on Space Technology and Science (ICTS). July 2015, Kobe, Japan}, pages = {5 S.}, year = {2015}, language = {en} }