@article{LuftLuftArntz2023, author = {Luft, Angela and Luft, Nils and Arntz, Kristian}, title = {A basic description logic for service-oriented architecture in factory planning and operational control in the age of industry 4.0}, series = {Applied Sciences}, volume = {2023}, journal = {Applied Sciences}, number = {13}, publisher = {MDPI}, address = {Basel}, issn = {2076-3417}, doi = {10.3390/app13137610}, pages = {23 Seiten}, year = {2023}, abstract = {Manufacturing companies across multiple industries face an increasingly dynamic and unpredictable environment. This development can be seen on both the market and supply side. To respond to these challenges, manufacturing companies must implement smart manufacturing systems and become more flexible and agile. The flexibility in operational planning regarding the scheduling and sequencing of customer orders needs to be increased and new structures must be implemented in manufacturing systems' fundamental design as they constitute much of the operational flexibility available. To this end, smart and more flexible solutions for production planning and control (PPC) are developed. However, scheduling or sequencing is often only considered isolated in a predefined stable environment. Moreover, their orientation on the fundamental logic of the existing IT solutions and their applicability in a dynamic environment is limited. This paper presents a conceptual model for a task-based description logic that can be applied to factory planning, technology planning, and operational control. By using service-oriented architectures, the goal is to generate smart manufacturing systems. The logic is designed to allow for easy and automated maintenance. It is compatible with the existing resource and process allocation logic across operational and strategic factory and production planning.}, language = {en} } @article{ReisgenSchleserAbdurakhmanovetal.2012, author = {Reisgen, Uwe and Schleser, Markus and Abdurakhmanov, Aydemir and Gumenyuk, Andrey}, title = {Measuring of plasma properties induced by non-vacuum electron beam welding}, series = {Physics of plasma}, volume = {19}, journal = {Physics of plasma}, number = {1}, publisher = {AIP Publishing}, address = {Melville, NY}, issn = {1089-7674 (E-Journal); 1070-664X (Print)}, doi = {10.1063/1.3675874}, year = {2012}, abstract = {Electron beam plasma measurement was realised by means of DIABEAM system invented by ISF RWTH Aachen. The Langmuir probe method is used for measurement. The relative simplicity of the method and the possibility of dispersion of high power on the probe allow its application for the investigation of high-power electron beams. The key element of the method is a rotating thin tungsten wire, which intersects the beam transversely on its axis and collects part of the current by itself. The signals, which are registered in the DIABEAM as a voltage, were taken in the form of amplitude. The conversion of the probe current into the distribution along the beam radius was realised using the Abel's method. A voltage-current characteristic was built for the beam current. The local electron density as well as the electron temperature, the floating potential and the plasma potential were measured and calculated by means of this characteristic.}, language = {en} } @article{ReisgenOlschokJakobsetal.2012, author = {Reisgen, Uwe and Olschok, Simon and Jakobs, Stefan and Schleser, Markus and Mokrov, Oleg and Rossiter, Eduardo}, title = {Laser beam submerged arc hybrid welding}, series = {Physics procedia}, volume = {39}, journal = {Physics procedia}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1875-3892}, doi = {10.1016/j.phpro.2012.10.016}, pages = {75 -- 83}, year = {2012}, abstract = {The laser beam-submerged arc hybrid welding method originates from the knowledge that, with increasing penetration depth, the laser beam process has a tendency to pore formation in the lower weld regions. The coupling with the energy-efficient submerged-arc process improves degassing and reduces the tendency to pore formation. The high deposition rate of the SA process in combination with the laser beam process offers, providing the appropriate choice of weld preparation, the possibility of welding plates with a thickness larger than 20° mm in a single pass, and also of welding thicker plates with the double-sided single pass technique.}, language = {en} } @inproceedings{PfaffMelcherFranzen2018, author = {Pfaff, Raphael and Melcher, Karin and Franzen, Julian}, title = {Rare event simulation to optimise maintenance intervals of safety critical redundant subsystems}, series = {Proceedings of the European Conference of the PHM Society}, volume = {4}, booktitle = {Proceedings of the European Conference of the PHM Society}, number = {1}, pages = {1 -- 6}, year = {2018}, language = {en} } @article{PfaffEnningSutter2022, author = {Pfaff, Raphael and Enning, Manfred and Sutter, Stefan}, title = {A risk‑based approach to automatic brake tests for rail freight service: incident analysis and realisation concept}, series = {SN Applied Sciences}, volume = {4}, journal = {SN Applied Sciences}, number = {4}, publisher = {Springer}, address = {Cham}, issn = {2523-3971}, doi = {10.1007/s42452-022-05007-x}, pages = {1 -- 14}, year = {2022}, abstract = {This study reviews the practice of brake tests in freight railways, which is time consuming and not suitable to detect certain failure types. Public incident reports are analysed to derive a reasonable brake test hardware and communication architecture, which aims to provide automatic brake tests at lower cost than current solutions. The proposed solutions relies exclusively on brake pipe and brake cylinder pressure sensors, a brake release position switch as well as radio communication via standard protocols. The approach is embedded in the Wagon 4.0 concept, which is a holistic approach to a smart freight wagon. The reduction of manual processes yields a strong incentive due to high savings in manual labour and increased productivity.}, language = {en} } @inproceedings{ShahidiPfaffEnning2017, author = {Shahidi, Parham and Pfaff, Raphael and Enning, Manfred}, title = {The connected wagon - a concept for the integration of vehicle side sensors and actors with cyber physical representation for condition based maintenance}, series = {First International Conference on Rail Transportation}, booktitle = {First International Conference on Rail Transportation}, pages = {1 -- 8}, year = {2017}, language = {en} } @inproceedings{PfaffSchmidtEnning2017, author = {Pfaff, Raphael and Schmidt, B. D. and Enning, Manfred}, title = {Towards inclusion of the freight rail system in the industrial internet of things - Wagon 4.0}, series = {Stephenson Conference, London, March 2017}, booktitle = {Stephenson Conference, London, March 2017}, pages = {1 -- 10}, year = {2017}, language = {en} } @misc{Pfaff2006, type = {Master Thesis}, author = {Pfaff, Raphael}, title = {Modelling of nonlinear systems using piecewise defined models}, year = {2006}, language = {en} } @inproceedings{BueckingPfaffDirksmeier2018, author = {B{\"u}cking, Henrik and Pfaff, Raphael and Dirksmeier, Roger}, title = {Sensor positioning and thermal model for condition monitoring of pressure gas reservoirs in vehicles}, series = {Proceedings of the Fourth European Conference of the Prognostics and Health Management Society, Utrecht, Netherlands, 2018}, booktitle = {Proceedings of the Fourth European Conference of the Prognostics and Health Management Society, Utrecht, Netherlands, 2018}, pages = {5 Seiten}, year = {2018}, language = {en} } @inproceedings{PfaffMoshiriReichetal.2017, author = {Pfaff, Raphael and Moshiri, Amir and Reich, Alexander and G{\"a}bel, Markus}, title = {Modelling of the effect of sanding on the wheel-rail adhesion area}, series = {First International Conference on Rail Transportation}, booktitle = {First International Conference on Rail Transportation}, pages = {1 -- 7}, year = {2017}, language = {en} }