@inproceedings{WeissHeslenfeldSaeweetal.2022, author = {Weiss, Christian and Heslenfeld, Jonas and Saewe, Jasmin Kathrin and Bremen, Sebastian and H{\"a}fner, Constantin Leon}, title = {Investigation on the influence of powder humidity in Laser Powder Bed Fusion (LPBF)}, series = {Procedia CIRP 12th CIRP Conference on Photonic Technologies [LANE 2022]}, volume = {111}, booktitle = {Procedia CIRP 12th CIRP Conference on Photonic Technologies [LANE 2022]}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2212-8271}, doi = {10.1016/j.procir.2022.08.102}, pages = {115 -- 120}, year = {2022}, abstract = {In the Laser Powder Bed Fusion (LPBF) process, parts are built out of metal powder material by exposure of a laser beam. During handling operations of the powder material, several influencing factors can affect the properties of the powder material and therefore directly influence the processability during manufacturing. Contamination by moisture due to handling operations is one of the most critical aspects of powder quality. In order to investigate the influences of powder humidity on LPBF processing, four materials (AlSi10Mg, Ti6Al4V, 316L and IN718) are chosen for this study. The powder material is artificially humidified, subsequently characterized, manufactured into cubic samples in a miniaturized process chamber and analyzed for their relative density. The results indicate that the processability and reproducibility of parts made of AlSi10Mg and Ti6Al4V are susceptible to humidity, while IN718 and 316L are barely influenced.}, language = {en} } @book{EngelnMuellgesUhlig1996, author = {Engeln-M{\"u}llges, Gisela and Uhlig, Frank}, title = {Numerical algorithms with C}, publisher = {Springer}, address = {Berlin [u.a.]}, isbn = {3-540-60530-0}, pages = {XXII, 596 S. : graph. Darst. + 1 CD-ROM}, year = {1996}, language = {en} } @book{EngelnMuellgesUhlig1996, author = {Engeln-M{\"u}llges, Gisela and Uhlig, Frank}, title = {Numeric Algorithms with Fortran}, publisher = {Springer}, address = {Berlin [u.a.]}, isbn = {3-540-60529-0}, pages = {XXII, 602 S. : Ill., graph. Darst. + 1 CD-ROM}, year = {1996}, language = {en} } @book{DobischatWittEichetal.2015, author = {Dobischat, Rolf and Witt, Gerd and Eich, Dieter and Marschall, Herbert and Thurn, Laura and Kunkel, Maximilian and Richter, Alina and Gebhardt, Andreas}, title = {3D-Drucken in Deutschland : Entwicklungsstand, Potentiale, Herausforderungen, Auswirkungen und Perspektiven}, publisher = {Shaker-Verl.}, address = {Aachen}, isbn = {978-3-8440-3479-0}, pages = {170 S. : Ill., graph. Darst.}, year = {2015}, language = {de} } @inproceedings{KallweitSchleupenDahmannetal.2016, author = {Kallweit, Stephan and Schleupen, Josef and Dahmann, Peter and Bagheri, Mohsen and Engemann, Heiko}, title = {Entwicklung eines Kletterroboters zur Diagnose und Instandsetzung von Windenergieanlagen (SMART)}, series = {Automatisierung im Fokus von Industrie 4.0 : Tagungsband AALE 2016 ; 13. Fachkonferenz, L{\"u}beck}, booktitle = {Automatisierung im Fokus von Industrie 4.0 : Tagungsband AALE 2016 ; 13. Fachkonferenz, L{\"u}beck}, publisher = {DIV Deutscher Industrieverlag GmbH}, address = {M{\"u}nchen}, isbn = {978-3-8356-7312-0}, pages = {207 -- 212}, year = {2016}, language = {de} } @inproceedings{EichlerSkupinThurnetal.2019, author = {Eichler, Fabian and Skupin, Marco and Thurn, Laura and Kasch, Susanne and Schmidt, Thomas}, title = {Operating limits for beam melting of glass materials}, series = {Modern Technologies in Manufacturing (MTeM 2019)}, volume = {299}, booktitle = {Modern Technologies in Manufacturing (MTeM 2019)}, number = {Article 01004}, doi = {10.1051/matecconf/201929901004}, pages = {8 Seiten}, year = {2019}, abstract = {Laser-based Additive Manufacturing (AM) processes for the use of metals out of the powder bed have been investigated profusely and are prevalent in industry. Although there is a broad field of application, Laser Powder Bed Fusion (LPBF), also known as Selective Laser Melting (SLM) of glass is not fully developed yet. The material properties of glass are significantly different from the investigated metallic material for LPBF so far. As such, the process cannot be transferred, and the parameter limits and the process sequence must be redefined for glass. Starting with the characterization of glass powders, a parameter field is initially confined to investigate the process parameter of different glass powder using LPBFprocess. A feasibility study is carried out to process borosilicate glass powder. The effects of process parameters on the dimensional accuracy of fabricated parts out of borosilicate and hints for the post-processing are analysed and presented in this paper.}, language = {en} } @incollection{FrotscherGossmannRaatschenetal.2015, author = {Frotscher, Ralf and Goßmann, Matthias and Raatschen, Hans-J{\"u}rgen and Temiz Artmann, Ayseg{\"u}l and Staat, Manfred}, title = {Simulation of cardiac cell-seeded membranes using the edge-based smoothed FEM}, series = {Shell and membrane theories in mechanics and biology. (Advanced structured materials ; 45)}, booktitle = {Shell and membrane theories in mechanics and biology. (Advanced structured materials ; 45)}, publisher = {Springer}, address = {Heidelberg}, isbn = {978-3-319-02534-6 ; 978-3-319-02535-3}, pages = {187 -- 212}, year = {2015}, abstract = {We present an electromechanically coupled Finite Element model for cardiac tissue. It bases on the mechanical model for cardiac tissue of Hunter et al. that we couple to the McAllister-Noble-Tsien electrophysiological model of purkinje fibre cells. The corresponding system of ordinary differential equations is implemented on the level of the constitutive equations in a geometrically and physically nonlinear version of the so-called edge-based smoothed FEM for plates. Mechanical material parameters are determined from our own pressure-deflection experimental setup. The main purpose of the model is to further examine the experimental results not only on mechanical but also on electrophysiological level down to ion channel gates. Moreover, we present first drug treatment simulations and validate the model with respect to the experiments.}, language = {en} } @article{KaschSchmidtJahnetal.2021, author = {Kasch, Susanne and Schmidt, Thomas and Jahn, Simon and Eichler, Fabian and Thurn, Laura and Bremen, Sebastian}, title = {L{\"o}sungsans{\"a}tze und Verfahrenskonzepte zum Laserstrahlschmelzen von Glas}, series = {Schweissen und Schneiden}, volume = {73}, journal = {Schweissen und Schneiden}, number = {Heft 1-2}, publisher = {DVS Verlag}, address = {D{\"u}sseldorf}, isbn = {0036-7184}, pages = {32 -- 39}, year = {2021}, language = {de} } @inproceedings{KaschSchmidtEichleretal.2020, author = {Kasch, Susanne and Schmidt, Thomas and Eichler, Fabian and Thurn, Laura and Jahn, Simon and Bremen, Sebastian}, title = {Solution approaches and process concepts for powder bed-based melting of glass}, series = {Industrializing Additive Manufacturing. Proceedings of AMPA2020}, booktitle = {Industrializing Additive Manufacturing. Proceedings of AMPA2020}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-54333-4 (Print)}, doi = {10.1007/978-3-030-54334-1_7}, pages = {82 -- 95}, year = {2020}, abstract = {In the study, the process chain of additive manufacturing by means of powder bed fusion will be presented based on the material glass. In order to reliably process components additively, new concepts with different solutions were developed and investigated. Compared to established metallic materials, the properties of glass materials differ significantly. Therefore, the process control was adapted to the material glass in the investigations. With extensive parameter studies based on various glass powders such as borosilicate glass and quartz glass, scientifically proven results on powder bed fusion of glass are presented. Based on the determination of the particle properties with different methods, extensive investigations are made regarding the melting behavior of glass by means of laser beams. Furthermore, the experimental setup was steadily expanded. In addition to the integration of coaxial temperature measurement and regulation, preheating of the building platform is of major importance. This offers the possibility to perform 3D printing at the transformation temperatures of the glass materials. To improve the component's properties, the influence of a subsequent heat treatment was also investigated. The experience gained was incorporated into a new experimental system, which allows a much better exploration of the 3D printing of glass. Currently, studies are being conducted to improve surface texture, building accuracy, and geometrical capabilities using three-dimensional specimen. The contribution shows the development of research in the field of 3D printing of glass, gives an insight into the machine and process engineering as well as an outlook on the possibilities and applications.}, language = {en} } @inproceedings{GoettscheHinschWittwer1992, author = {G{\"o}ttsche, Joachim and Hinsch, Andreas and Wittwer, Volker}, title = {Electrochromic and optical properties of mixed WO3-TiO2 thin films produced by sputtering and the sol-gel technique}, series = {Optical materials technology for energy efficiency and solar energy conversion XI: chromogenics for smart windows : 19 and 21 May 1992, Toulouse-Lab{\`e}ge. (SPIE proceedings series. 1728)}, booktitle = {Optical materials technology for energy efficiency and solar energy conversion XI: chromogenics for smart windows : 19 and 21 May 1992, Toulouse-Lab{\`e}ge. (SPIE proceedings series. 1728)}, editor = {Hugo-Le Goff, Anne}, publisher = {SPIE}, address = {Bellingham, Wash.}, isbn = {0-8194-0901-4}, pages = {13 -- 25}, year = {1992}, language = {en} }