@inproceedings{DerschGeyerHerrmannetal.2002, author = {Dersch, J{\"u}rgen and Geyer, Michael and Herrmann, Ulf and Jones, Scott A. and Kelly, Bruce and Kistner, Rainer and Ortmanns, Winfried and Pitz-Paal, Robert and Price, Henry}, title = {Solar Trough Integration Into Combined Cycle Systems}, series = {Solar engineering 2002 : proceedings of the International Solar Energy Conference ; presented at the 2002 International Solar Energy Conference, a part of Solar 2002 - Sunrise on the Reliable Energy Economy, June 15 - 20, 2002, Reno, Nevada}, booktitle = {Solar engineering 2002 : proceedings of the International Solar Energy Conference ; presented at the 2002 International Solar Energy Conference, a part of Solar 2002 - Sunrise on the Reliable Energy Economy, June 15 - 20, 2002, Reno, Nevada}, editor = {Pearson, J. Boise}, publisher = {ASME}, isbn = {0-7918-1689-3}, doi = {doi:10.1115/SED2002-1072}, pages = {351 -- 359}, year = {2002}, language = {en} } @article{PuppeGiulianoFrantzetal.2018, author = {Puppe, Michael and Giuliano, Stefano and Frantz, Cathy and Uhlig, Ralf and Schumacher, Ralph and Ibraheem, Wagdi and Schmalz, Stefan and Waldmann, Barbara and Guder, Christoph and Peter, Dennis and Schwager, Christian and Teixeira Boura, Cristiano Jos{\´e} and Alexopoulos, Spiros and Spiegel, Michael and Wortmann, J{\"u}rgen and Hinrichs, Matthias and Engelhard, Manfred and Aust, Michael}, title = {Techno-economic optimization of molten salt solar tower plants}, series = {AIP Conference Proceedings art.no. 040033}, volume = {2033}, journal = {AIP Conference Proceedings art.no. 040033}, number = {Issue 1}, publisher = {AIP Publishing}, address = {Melville, NY}, doi = {10.1063/1.5067069}, year = {2018}, abstract = {In this paper the results of a techno-economic analysis of improved and optimized molten salt solar tower plants (MSSTP plants) are presented. The potential improvements that were analyzed include different receiver designs, different designs of the HTF-system and plant control, increased molten salt temperatures (up to 640°C) and multi-tower systems. Detailed technological and economic models of the solar field, solar receiver and high temperature fluid system (HTF-system) were developed and used to find potential improvements compared to a reference plant based on Solar Two technology and up-to-date cost estimations. The annual yield model calculates the annual outputs and the LCOE of all variants. An improved external tubular receiver and improved HTF-system achieves a significant decrease of LCOE compared to the reference. This is caused by lower receiver cost as well as improvements of the HTF-system and plant operation strategy, significantly reducing the plant own consumption. A novel star receiver shows potential for further cost decrease. The cavity receiver concepts result in higher LCOE due to their high investment cost, despite achieving higher efficiencies. Increased molten salt temperatures seem possible with an adapted, closed loop HTF-system and achieve comparable results to the original improved system (with 565°C) under the given boundary conditions. In this analysis all multi tower systems show lower economic viability compared to single tower systems, caused by high additional cost for piping connections and higher cost of the receivers. REFERENCES}, language = {en} } @book{LabischWaehlisch2020, author = {Labisch, Susanna and W{\"a}hlisch, Georg}, title = {Technisches Zeichnen: Eigenst{\"a}ndig lernen und effektiv {\"u}ben}, edition = {6th ed.}, publisher = {Springer Vieweg}, address = {Wiesbaden}, isbn = {978-3-658-30650-2 (E-Book)}, doi = {10.1007/978-3-658-30650-2}, pages = {Online-Ressource (XI, 296 S. 300 Abb., 81 Abb. in Farbe)}, year = {2020}, language = {de} } @book{LabischWaehlisch2017, author = {Labisch, Susanna and W{\"a}hlisch, Georg}, title = {Technisches Zeichnen: Eigenst{\"a}ndig lernen und effektiv {\"u}ben}, edition = {5. {\"u}berarbeitete Auflage}, publisher = {Springer Vieweg}, address = {Wiesbaden}, isbn = {978-3-658-18312-7}, doi = {10.1007/978-3-658-18313-4}, pages = {XI, 300 Seiten ; Illustrationen}, year = {2017}, language = {de} } @inproceedings{FrantzBinderBuschetal.2020, author = {Frantz, Cathy and Binder, Matthias and Busch, Konrad and Ebert, Miriam and Heinrich, Andreas and Kaczmarkiewicz, Nadine and Schl{\"o}gl-Knothe, B{\"a}rbel and Kunze, Tobias and Schuhbauer, Christian and Stetka, Markus and Schwager, Christian and Spiegel, Michael and Teixeira Boura, Cristiano Jos{\´e} and Bauer, Thomas and Bonk, Alexander and Eisen, Stefan and Funck, Bernhard}, title = {Basic Engineering of a High Performance Molten Salt Tower Receiver System}, series = {AIP Conference Proceedings}, booktitle = {AIP Conference Proceedings}, doi = {10.1063/5.0085895}, pages = {1 -- 10}, year = {2020}, abstract = {The production of dispatchable renewable energy will be one of the most important key factors of the future energy supply. Concentrated solar power (CSP) plants operated with molten salt as heat transfer and storage media are one opportunity to meet this challenge. Due to the high concentration factor of the solar tower technology the maximum process temperature can be further increased which ultimately decreases the levelized costs of electricity of the technology (LCOE). The development of an improved tubular molten salt receiver for the next generation of molten salt solar tower plants is the aim of this work. The receiver is designed for a receiver outlet temperature up to 600 °C. Together with a complete molten salt system, the receiver will be integrated into the Multi-Focus-Tower (MFT) in J{\"u}lich (Germany). The paper describes the basic engineering of the receiver, the molten salt tower system and a laboratory corrosion setup.}, language = {en} } @article{KearneyHerrmannNavaetal.2003, author = {Kearney, D. and Herrmann, Ulf and Nava, P. and Kelly, B. and Mahoney, R. and Pacheco, J. and Cable, R. and Potrovitza, N. and Blake, D. and Price, H.}, title = {Assessment of a Molten Salt Heat Transfer Fluid in a Parabolic Trough Solar Field}, series = {Journal of Solar Energy Engineering}, volume = {125}, journal = {Journal of Solar Energy Engineering}, number = {2}, issn = {1528-8986}, doi = {10.1115/1.1565087}, pages = {170 -- 176}, year = {2003}, language = {en} } @inproceedings{AnthrakidisHerrmannSchornetal.2015, author = {Anthrakidis, Anette and Herrmann, Ulf and Schorn, Christian and Schwarzer, Klemens and Wedding, Philipp and Weis, Fabian}, title = {Development and Testing of a Novel Method for the Determination of the Efficiency of Concentrating Solar Thermal Collectors}, series = {Conference Proceedings Solar World Congress 2015, Daegu, Korea, 08 - 12 November 2015}, booktitle = {Conference Proceedings Solar World Congress 2015, Daegu, Korea, 08 - 12 November 2015}, pages = {9 Seiten}, year = {2015}, language = {en} } @techreport{WeisSchornAnthrakidisetal.2016, author = {Weis, Fabian and Schorn, Christian and Anthrakidis, Anette and Herrmann, Ulf}, title = {Entwicklung eines kleinen Parabolrinnenkollektors mit Kunststoffkorpus zur Bereitstellung solarer Prozessw{\"a}rme : Poly-P : Abschlussbericht}, publisher = {Solar-Institut J{\"u}lich}, address = {J{\"u}lich}, pages = {56 Seiten}, year = {2016}, language = {de} } @inproceedings{TeixeiraBouraNiederwestbergMcLeodetal.2016, author = {Teixeira Boura, Cristiano Jos{\´e} and Niederwestberg, Stefan and McLeod, Jacqueline and Herrmann, Ulf and Hoffschmidt, Bernhard}, title = {Development of heat exchanger for high temperature energy storage with bulk materials}, series = {AIP Conference Proceedings}, volume = {1734}, booktitle = {AIP Conference Proceedings}, number = {1}, doi = {10.1063/1.4949106}, pages = {050008-1 -- 050008-7}, year = {2016}, language = {en} } @inproceedings{SauerbornLiebenstundRaueetal.2017, author = {Sauerborn, Markus and Liebenstund, Lena and Raue, Markus and Mang, Thomas and Herrmann, Ulf and Dueing, Andreas}, title = {Analytic method for material aging and quality analyzing to forecast long time stability of plastic micro heliostat components}, series = {AIP Conference Proceedings}, volume = {1850}, booktitle = {AIP Conference Proceedings}, number = {1}, doi = {10.1063/1.4984388}, pages = {030045-1 -- 030045-8}, year = {2017}, language = {en} } @incollection{HerrmannKearneyRoegeretal.2017, author = {Herrmann, Ulf and Kearney, D. and R{\"o}ger, M. and Prahl, C.}, title = {System performance measurements}, series = {The Performance of Concentrated Solar Power (CSP) Systems : Modelling, Measurement and Assessment}, booktitle = {The Performance of Concentrated Solar Power (CSP) Systems : Modelling, Measurement and Assessment}, publisher = {Woodhead Publishing}, address = {Duxford}, isbn = {978-0-08-100448-7}, doi = {https://doi.org/10.1016/B978-0-08-100447-0.00005-5}, pages = {115 -- 165}, year = {2017}, abstract = {This chapter introduces performance and acceptance testing and describes state-of-the-art tools, methods, and instruments to assess the plant performance or realize plant acceptance testing. The status of the development of standards for performance assessment is given.}, language = {en} } @inproceedings{SchornWeisAnthrakidisetal.2016, author = {Schorn, Christian and Weis, Fabian and Anthrakidis, Anette and Schwarzer, Klemens and Schmitz, Mark and Herrmann, Ulf}, title = {Entwicklung und Bewertung eines Parabolrinnenkollektors zur Prozessw{\"a}rmebereitstellung}, series = {26. Symposium Thermische Solarenergie, 20.-22.04.2016 in Bad Staffelstein}, booktitle = {26. Symposium Thermische Solarenergie, 20.-22.04.2016 in Bad Staffelstein}, pages = {1 -- 13}, year = {2016}, language = {de} } @inproceedings{RendonDieckmannWeidleetal.2018, author = {Rendon, Carlos and Dieckmann, Simon and Weidle, Mathias and Dersch, J{\"u}rgen and Teixeira Boura, Cristiano Jos{\´e} and Polklas, Thomas and Kuschel, Marcus and Herrmann, Ulf}, title = {Retrofitting of existing parabolic trough collector power plants with molten salt tower systems}, series = {AIP Conference Proceedings}, volume = {2033}, booktitle = {AIP Conference Proceedings}, number = {1}, doi = {10.1063/1.5067030}, pages = {030014-1 -- 030014-8}, year = {2018}, language = {en} } @inproceedings{AnthrakidisHerrmannSchornetal.2015, author = {Anthrakidis, Anette and Herrmann, Ulf and Schorn, Christian and Schwarzer, Klemens and Wedding, Philipp}, title = {Weiterentwicklung und Erprobung eines neuartigen Verfahrens zur Bestimmung der Effizienz von konzentrierenden solarthermischen Kollektoren}, series = {25. OTTI Symposium Thermische Solarenergie}, booktitle = {25. OTTI Symposium Thermische Solarenergie}, pages = {15 Seiten}, year = {2015}, language = {de} } @inproceedings{BreitbachAlexopoulosMayetal.2019, author = {Breitbach, Gerd and Alexopoulos, Spiros and May, Martin and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf}, title = {Analysis of volumetric solar radiation absorbers made of wire meshes}, series = {AIP Conference Proceedings}, volume = {2126}, booktitle = {AIP Conference Proceedings}, issn = {0094243X}, doi = {10.1063/1.5117521}, pages = {030009-1 -- 030009-6}, year = {2019}, language = {en} } @inproceedings{MahdiRendonSchwageretal.2019, author = {Mahdi, Zahra and Rend{\´o}n, Carlos and Schwager, Christian and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf}, title = {Novel concept for indirect solar-heated methane reforming}, series = {AIP Conference Proceedings}, volume = {2126}, booktitle = {AIP Conference Proceedings}, publisher = {AIP Publishing}, address = {Melville, NY}, issn = {0094-243X}, doi = {10.1063/1.5117694}, pages = {180014-1 -- 180014-7}, year = {2019}, language = {en} } @inproceedings{MayBreitbachAlexopoulosetal.2019, author = {May, Martin and Breitbach, Gerd and Alexopoulos, Spiros and Latzke, Markus and B{\"a}umer, Klaus and Uhlig, Ralf and S{\"o}hn, Matthias and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf}, title = {Experimental facility for investigations of wire mesh absorbers for pressurized gases}, series = {AIP Conference Proceedings}, volume = {2126}, booktitle = {AIP Conference Proceedings}, issn = {0094243X}, doi = {10.1063/1.5117547}, pages = {030035-1 -- 030035-9}, year = {2019}, language = {en} } @inproceedings{SattlerAlexopoulosCaminosetal.2019, author = {Sattler, Johannes, Christoph and Alexopoulos, Spiros and Caminos, Ricardo Alexander Chico and Mitchell, John C. and Ruiz, Victor C. and Kalogirou, Soteris and Ktistis, Panayiotis K. and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf}, title = {Dynamic simulation model of a parabolic trough collector system with concrete thermal energy storage for process steam generation}, series = {AIP Conference Proceedings}, volume = {2126}, booktitle = {AIP Conference Proceedings}, issn = {0094243X}, doi = {10.1063/1.5117663}, pages = {150007-1 -- 150007-8}, year = {2019}, language = {en} } @article{HerrmannSchwarzenbartDittmannGabriel2019, author = {Herrmann, Ulf and Schwarzenbart, Marc and Dittmann-Gabriel, S{\"o}ren}, title = {Speicher statt Kohle. Integration thermischer Stromspeicher in vorhandene Kraftwerksstandorte}, series = {BWK : Das Energie-Fachmagazin}, volume = {71}, journal = {BWK : Das Energie-Fachmagazin}, number = {4}, publisher = {Springer-VDI-Verl.}, address = {D{\"u}sseldorf}, issn = {1436-4883}, pages = {42 -- 45}, year = {2019}, language = {de} } @article{WoliszSchuetzBlankeetal.2017, author = {Wolisz, Henryk and Sch{\"u}tz, Thomas and Blanke, Tobias and Hagenkamp, Markus and Kohrn, Markus and Wesseling, Mark and M{\"u}ller, Dirk}, title = {Cost optimal sizing of smart buildings' energy system components considering changing end-consumer electricity markets}, series = {Energy}, volume = {137}, journal = {Energy}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.energy.2017.06.025}, pages = {715 -- 728}, year = {2017}, language = {en} } @inproceedings{BlankeDringVonteinetal.2018, author = {Blanke, Tobias and Dring, Bernd and Vontein, Marius and Kuhnhenne, Markus}, title = {Climate Change Mitigation Potentials of Vertical Building Integrated Photovoltaic}, series = {8th International Workshop on Integration of Solar Power into Power Systems : 16-17 October 2018, Stockholm, Sweden}, booktitle = {8th International Workshop on Integration of Solar Power into Power Systems : 16-17 October 2018, Stockholm, Sweden}, pages = {1 -- 7}, year = {2018}, language = {en} } @article{RegerKuhnhenneEbbertetal.2020, author = {Reger, Vitali and Kuhnhenne, Markus and Ebbert, Thiemo and Hachul, Helmut and Blanke, Tobias and D{\"o}ring, Bernd}, title = {Nutzung erneuerbarer Energien durch thermische Aktivierung von Komponenten aus Stahl}, series = {Stahlbau}, volume = {2020}, journal = {Stahlbau}, number = {Volume 89, Issue 6512-519}, publisher = {Ernst \& Sohn}, address = {Berlin}, issn = {1437-1049}, doi = {10.1002/stab.202000031}, pages = {512 -- 519}, year = {2020}, abstract = {Die Versorgung von Neubauten soll m{\"o}glichst weitgehend unabh{\"a}ngig von fossilen Energietr{\"a}gern erfolgen. Erneuerbare Energien spielen daf{\"u}r eine gewichtige Rolle. Eine gute M{\"o}glichkeit, erneuerbare Energien ohne viel zus{\"a}tzlichen Aufwand nutzbar zu machen, ist, bereits vorhandenen Komponenten im Geb{\"a}ude zus{\"a}tzliche Funktionen zu geben. Hier kann bspw. die Fassade oder das Dach solarthermisch aktiviert oder durch Fotovoltaikmodule erg{\"a}nzt werden. Auch Tiefgr{\"u}ndungen k{\"o}nnen neben der statischen Funktion noch eine geothermische Funktion zur Aufnahme oder Abgabe von W{\"a}rme erhalten. Neben der Erzeugung bietet sich auch f{\"u}r die Verteilung der W{\"a}rme oder K{\"a}lte im Geb{\"a}ude die Integration in Bauteile an. Hier kann bspw. der Boden durch eine Fußbodenheizung oder die Decke durch Deckenstrahlplatten aktiviert werden. Im Rahmen der Ver{\"o}ffentlichung wird auf die thermische Aktivierung von Stahlkomponenten eingegangen. Es wird eine L{\"o}sung vorgestellt, die vorgeh{\"a}ngte hinterl{\"u}ftete Stahlfassade (VHF) solarthermisch zu aktivieren. Außerdem werden zwei M{\"o}glichkeiten zur geothermischen Aktivierung von Tiefgr{\"u}ndungen mittels Stahlpf{\"a}hlen gezeigt. Zuletzt wird ein System zur thermischen Aktivierung von Stahltrapezprofilen an der Decke erl{\"a}utert, welches W{\"a}rme zuf{\"u}hren oder bei Bedarf abf{\"u}hren kann.}, language = {de} } @inproceedings{KreyerMuellerEsch2020, author = {Kreyer, J{\"o}rg and M{\"u}ller, Marvin and Esch, Thomas}, title = {A Map-Based Model for the Determination of Fuel Consumption for Internal Combustion Engines as a Function of Flight Altitude}, publisher = {DGLR}, address = {Bonn}, doi = {10.25967/490162}, pages = {13 Seiten}, year = {2020}, abstract = {In addition to very high safety and reliability requirements, the design of internal combustion engines (ICE) in aviation focuses on economic efficiency. The objective must be to design the aircraft powertrain optimized for a specific flight mission with respect to fuel consumption and specific engine power. Against this background, expert tools provide valuable decision-making assistance for the customer. In this paper, a mathematical calculation model for the fuel consumption of aircraft ICE is presented. This model enables the derivation of fuel consumption maps for different engine configurations. Depending on the flight conditions and based on these maps, the current and the integrated fuel consumption for freely definable flight emissions is calculated. For that purpose, an interpolation method is used, that has been optimized for accuracy and calculation time. The mission boundary conditions flight altitude and power requirement of the ICE form the basis for this calculation. The mathematical fuel consumption model is embedded in a parent program. This parent program presents the simulated fuel consumption by means of an example flight mission for a representative airplane. The focus of the work is therefore on reproducing exact consumption data for flight operations. By use of the empirical approaches according to Gagg-Farrar [1] the power and fuel consumption as a function of the flight altitude are determined. To substantiate this approaches, a 1-D ICE model based on the multi-physical simulation tool GT-Suite® has been created. This 1-D engine model offers the possibility to analyze the filling and gas change processes, the internal combustion as well as heat and friction losses for an ICE under altitude environmental conditions. Performance measurements on a dynamometer at sea level for a naturally aspirated ICE with a displacement of 1211 ccm used in an aviation aircraft has been done to validate the 1-D ICE model. To check the plausibility of the empirical approaches with respect to the fuel consumption and performance adjustment for the flight altitude an analysis of the ICE efficiency chain of the 1-D engine model is done. In addition, a comparison of literature and manufacturer data with the simulation results is presented.}, language = {en} } @article{BlankeRegerDoeringetal.2021, author = {Blanke, Tobias and Reger, Vitali and D{\"o}ring, Bernd and G{\"o}ttsche, Joachim and Kuhnhenne, Markus}, title = {Koaxiale Stahlenergiepf{\"a}hle}, series = {Stahlbau}, volume = {90. 2021}, journal = {Stahlbau}, number = {6}, publisher = {Wiley}, address = {Weinheim}, pages = {417 -- 424}, year = {2021}, abstract = {Ein entscheidender Teil der Energiewende ist die W{\"a}rmewende im Geb{\"a}udesektor. Ein Schl{\"u}sselelement sind hier W{\"a}rmepumpen. Diese ben{\"o}tigen eine W{\"a}rmequelle, der sie Energie entziehen k{\"o}nnen, um sie auf ein h{\"o}heres Temperaturniveau zu transformieren. Diese W{\"a}rmequelle kann bspw. das Erdreich sein, dessen W{\"a}rme durch Erdsonden erschlossen werden kann. In diesem Beitrag werden in Stahlpf{\"a}hle integrierte Koaxialsonden mit dem Stand der Technik von Erdsonden gleichen Durchmessers bez{\"u}glich ihrer thermischen Leistungsmerkmale verglichen. Die Stahlenergiepf{\"a}hle bieten neben der W{\"a}rmegewinnung weitere Vorteile, da sie auch eine statische Funktion {\"u}bernehmen und r{\"u}ckstandsfrei zur{\"u}ckgebaut werden k{\"o}nnen. Es werden analytische und numerische Berechnungen vorgestellt, um die thermischen Potenziale beider Systeme zu vergleichen. Außerdem wird ein Testaufbau gezeigt, bei dem Stahlenergiepf{\"a}hle in zwei verschiedenen L{\"a}ngen mit vorhandenen g{\"a}ngigen Erdsonden verglichen werden k{\"o}nnen. Die Berechnungen zeigen einen deutlichen thermischen Mehrertrag zwischen 26 \% und 148 \% der Stahlenergiepf{\"a}hle gegen{\"u}ber dem Stand der Technik abh{\"a}ngig vom Erdreich. Die Messergebnisse zeigen einen thermischen Mehrertrag von {\"u}ber 100 \%. Es l{\"a}sst sich also signifikante Erdsondenl{\"a}nge einsparen. Dabei ist zu beachten, dass sich damit der thermisch genutzte Bereich des Erdreichs reduziert, wodurch die thermische Regeneration und/oder das Langzeitverhalten des Erdreichs an Bedeutung gewinnt.}, language = {de} } @incollection{HoffschmidtAlexopoulosRauetal.2022, author = {Hoffschmidt, Bernhard and Alexopoulos, Spiros and Rau, Christoph and Sattler, Johannes, Christoph and Anthrakidis, Anette and Teixeira Boura, Cristiano Jos{\´e} and O'Connor, B. and Chico Caminos, R.A. and Rend{\´o}n, C. and Hilger, P.}, title = {Concentrating solar power}, series = {Comprehensive Renewable Energy (Second Edition) / Volume 3: Solar Thermal Systems: Components and Applications}, booktitle = {Comprehensive Renewable Energy (Second Edition) / Volume 3: Solar Thermal Systems: Components and Applications}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {978-0-12-819734-9}, pages = {670 -- 724}, year = {2022}, abstract = {The focus of this chapter is the production of power and the use of the heat produced from concentrated solar thermal power (CSP) systems. The chapter starts with the general theoretical principles of concentrating systems including the description of the concentration ratio, the energy and mass balance. The power conversion systems is the main part where solar-only operation and the increase in operational hours. Solar-only operation include the use of steam turbines, gas turbines, organic Rankine cycles and solar dishes. The operational hours can be increased with hybridization and with storage. Another important topic is the cogeneration where solar cooling, desalination and of heat usage is described. Many examples of commercial CSP power plants as well as research facilities from the past as well as current installed and in operation are described in detail. The chapter closes with economic and environmental aspects and with the future potential of the development of CSP around the world.}, language = {en} } @incollection{HoffschmidtAlexopoulosGoettscheetal.2022, author = {Hoffschmidt, Bernhard and Alexopoulos, Spiros and G{\"o}ttsche, Joachim and Sauerborn, Markus and Kaufhold, O.}, title = {High Concentration Solar Collectors}, series = {Comprehensive Renewable Energy (Second Edition) / Volume 3: Solar Thermal Systems: Components and Applications}, booktitle = {Comprehensive Renewable Energy (Second Edition) / Volume 3: Solar Thermal Systems: Components and Applications}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {978-0-12-819734-9}, doi = {10.1016/B978-0-12-819727-1.00058-3}, pages = {198 -- 245}, year = {2022}, abstract = {Solar thermal concentrated power is an emerging technology that provides clean electricity for the growing energy market. To the solar thermal concentrated power plant systems belong the parabolic trough, the Fresnel collector, the solar dish, and the central receiver system. For high-concentration solar collector systems, optical and thermal analysis is essential. There exist a number of measurement techniques and systems for the optical and thermal characterization of the efficiency of solar thermal concentrated systems. For each system, structure, components, and specific characteristics types are described. The chapter presents additionally an outline for the calculation of system performance and operation and maintenance topics. One main focus is set to the models of components and their construction details as well as different types on the market. In the later part of this article, different criteria for the choice of technology are analyzed in detail.}, language = {en} } @inproceedings{SchwagerTeixeiraBouraFleschetal.2019, author = {Schwager, Christian and Teixeira Boura, Cristiano Jos{\´e} and Flesch, Robert and Alexopoulos, Spiros and Herrmann, Ulf}, title = {Improved efficiency prediction of a molten salt receiver based on dynamic cloud passage simulation}, series = {AIP Conference Proceedings}, volume = {2126}, booktitle = {AIP Conference Proceedings}, number = {1}, isbn = {978-0-7354-1866-0}, doi = {10.1063/1.5117566}, pages = {030054-1 -- 030054-8}, year = {2019}, language = {en} } @article{RegerKuhnhenneHachuletal.2019, author = {Reger, Vitali and Kuhnhenne, Markus and Hachul, Helmut and D{\"o}ring, Bernd and Blanke, Tobias and G{\"o}ttsche, Joachim}, title = {Plusenergiegeb{\"a}ude 2.0 in Stahlleichtbauweise}, series = {Stahlbau}, volume = {88}, journal = {Stahlbau}, number = {6}, publisher = {Ernst \& Sohn}, address = {Berlin}, issn = {1437-1049 (E-journal), 0038-9145 (print)}, doi = {10.1002/stab.201900034}, pages = {522 -- 528}, year = {2019}, language = {de} } @inproceedings{GorzalkaDahlkeGoettscheetal.2018, author = {Gorzalka, Philip and Dahlke, Dennis and G{\"o}ttsche, Joachim and Israel, Martin and Patel, Dhruvkumar and Prahl, Christoph and Schmiedt, Jacob Estevam and Frommholz, Dirk and Hoffschmidt, Bernhard and Linkiewicz, Magdalena}, title = {Building Tomograph-From Remote Sensing Data of Existing Buildings to Building Energy Simulation Input}, series = {EBC, Annex 71, Fifth expert meeting, October 17-19, 2018, Innsbruck, Austria}, booktitle = {EBC, Annex 71, Fifth expert meeting, October 17-19, 2018, Innsbruck, Austria}, pages = {17 Seiten}, year = {2018}, language = {en} } @article{SattlerRoegerSchwarzboezletal.2020, author = {Sattler, Johannes, Christoph and R{\"o}ger, Marc and Schwarzb{\"o}zl, Peter and Buck, Reiner and Macke, Ansgar and Raeder, Christian and G{\"o}ttsche, Joachim}, title = {Review of heliostat calibration and tracking control methods}, series = {Solar Energy}, volume = {207}, journal = {Solar Energy}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.solener.2020.06.030}, pages = {110 -- 132}, year = {2020}, abstract = {Large scale central receiver systems typically deploy between thousands to more than a hundred thousand heliostats. During solar operation, each heliostat is aligned individually in such a way that the overall surface normal bisects the angle between the sun's position and the aim point coordinate on the receiver. Due to various tracking error sources, achieving accurate alignment ≤1 mrad for all the heliostats with respect to the aim points on the receiver without a calibration system can be regarded as unrealistic. Therefore, a calibration system is necessary not only to improve the aiming accuracy for achieving desired flux distributions but also to reduce or eliminate spillage. An overview of current larger-scale central receiver systems (CRS), tracking error sources and the basic requirements of an ideal calibration system is presented. Leading up to the main topic, a description of general and specific terms on the topics heliostat calibration and tracking control clarifies the terminology used in this work. Various figures illustrate the signal flows along various typical components as well as the corresponding monitoring or measuring devices that indicate or measure along the signal (or effect) chain. The numerous calibration systems are described in detail and classified in groups. Two tables allow the juxtaposition of the calibration methods for a better comparison. In an assessment, the advantages and disadvantages of individual calibration methods are presented.}, language = {en} } @article{ElMoussaouiTalbiAtmaneetal.2020, author = {El Moussaoui, Noureddine and Talbi, Sofian and Atmane, Ilyas and Kassmi, Khalil and Schwarzer, Klemens and Chayeb, Hamid and Bachiri, Najib}, title = {Feasibility of a new design of a Parabolic Trough Solar Thermal Cooker (PSTC)}, series = {Solar Energy}, volume = {201}, journal = {Solar Energy}, number = {Vol. 201 (May 2020)}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0038-092X}, doi = {10.1016/j.solener.2020.03.079}, pages = {866 -- 871}, year = {2020}, abstract = {In this article, we describe the structure, the functioning, and the tests of parabolic trough solar thermal cooker (PSTC). This oven is designed to meet the needs of rural residents, including Urban, which requires stable cooking temperatures above 200 °C. The cooking by this cooker is based on the concentration of the sun's rays on a glass vacuum tube and heating of the oil circulate in a big tube, located inside the glass tube. Through two small tubes, associated with large tube, the heated oil, rise and heats the pot of cooking pot containing the food to be cooked (capacity of 5 kg). This cooker is designed in Germany and extensively tested in Morocco for use by the inhabitants who use wood from forests. During a sunny day, having a maximum solar radiation around 720 W/m2 and temperature ambient around 26 °C, maximum temperatures recorded of the small tube, the large tube and the center of the pot are respectively: 370 °C, 270 °C and 260 °C. The cooking process with food at high (fries, ..), we show that the cooking oil temperature rises to 200 °C, after 1 h of heating, the cooking is done at a temperature of 120 °C for 20 min. These temperatures are practically stable following variations and decreases in the intensity of irradiance during the day. The comparison of these results with those of the literature shows an improvement of 30-50 \% on the maximum value of the temperature with a heat storage that could reach 60 min of autonomy. All the results obtained show the good functioning of the PSTC and the feasibility of cooking food at high temperature (>200 °C).}, language = {en} } @incollection{HoffschmidtAlexopoulosRauetal.2021, author = {Hoffschmidt, Bernhard and Alexopoulos, Spiros and Rau, Christoph and Sattler, Johannes, Christoph and Anthrakidis, Anette and Teixeira Boura, Cristiano Jos{\´e} and O'Connor, B. and Caminos, R.A. Chico and Rend{\´o}n, C. and Hilger, P.}, title = {Concentrating Solar Power}, series = {Earth systems and environmental sciences}, booktitle = {Earth systems and environmental sciences}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {978-0-12-409548-9}, doi = {10.1016/B978-0-12-819727-1.00089-3}, year = {2021}, abstract = {The focus of this chapter is the production of power and the use of the heat produced from concentrated solar thermal power (CSP) systems. The chapter starts with the general theoretical principles of concentrating systems including the description of the concentration ratio, the energy and mass balance. The power conversion systems is the main part where solar-only operation and the increase in operational hours. Solar-only operation include the use of steam turbines, gas turbines, organic Rankine cycles and solar dishes. The operational hours can be increased with hybridization and with storage. Another important topic is the cogeneration where solar cooling, desalination and of heat usage is described. Many examples of commercial CSP power plants as well as research facilities from the past as well as current installed and in operation are described in detail. The chapter closes with economic and environmental aspects and with the future potential of the development of CSP around the world.}, language = {en} } @article{MeyerHaenelBeehetal.2020, author = {Meyer, S. and H{\"a}nel, Matthias and Beeh, B. and Dittmann-Gabriel, S{\"o}ren and Dluhosch, R. and May, Martin and Herrmann, Ulf}, title = {Multifunktionaler thermischer Stromspeicher f{\"u}r die Strom- und W{\"a}rmeversorgung der Industrie von morgen}, series = {ETG Journal / Energietechnische Gesellschaft im VDE (ETG)}, volume = {2020}, journal = {ETG Journal / Energietechnische Gesellschaft im VDE (ETG)}, number = {1}, issn = {2625-9907}, pages = {6 -- 9}, year = {2020}, language = {de} } @inproceedings{SattlerChicoCaminosAttietal.2020, author = {Sattler, Johannes Christoph and Chico Caminos, Ricardo Alexander and Atti, Vikrama Nagababu and {\"U}rlings, Nicolas and Dutta, Siddharth and Ruiz, Victor and Kalogirou, Soteris and Ktistis, Panayiotis and Agathokleous, Rafaela and Alexopoulos, Spiros and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf}, title = {Dynamic simulation tool for a performance evaluation and sensitivity study of a parabolic trough collector system with concrete thermal energy storage}, series = {AIP Conference Proceedings 2303}, booktitle = {AIP Conference Proceedings 2303}, publisher = {American Institute of Physics}, address = {Melville, NY}, issn = {0094-243X}, doi = {10.1063/5.0029277}, pages = {160004}, year = {2020}, language = {de} } @article{HerrmannSchwarzenbartDittmannGabrieletal.2019, author = {Herrmann, Ulf and Schwarzenbart, Marc and Dittmann-Gabriel, S{\"o}ren and May, Martin}, title = {Hochtemperatur-W{\"a}rmespeicher f{\"u}r die Strom- und W{\"a}rmewende}, series = {Solarzeitalter : Politik, Kultur und {\"O}konomie erneuerbarer Energien}, volume = {31}, journal = {Solarzeitalter : Politik, Kultur und {\"O}konomie erneuerbarer Energien}, number = {2}, issn = {0937-3802}, pages = {18 -- 23}, year = {2019}, language = {de} } @article{DammSauerbornFendetal.2017, author = {Damm, Marc Andr{\´e} and Sauerborn, Markus and Fend, Thomas and Herrmann, Ulf}, title = {Optimisation of a urea selective catalytic reduction system with a coated ceramic mixing element}, series = {Journal of ceramic science and technology}, volume = {8}, journal = {Journal of ceramic science and technology}, number = {1}, publisher = {G{\"o}ller}, address = {Baden-Baden}, isbn = {2190-9385 (Print)}, issn = {2190-9385 (Online)}, doi = {10.4416/JCST2016-00056}, pages = {19 -- 24}, year = {2017}, language = {en} } @article{AlexopoulosHoffschmidt2017, author = {Alexopoulos, Spiros and Hoffschmidt, Bernhard}, title = {Advances in solar tower technology}, series = {Wiley interdisciplinary reviews : Energy and Environment : WIREs}, volume = {6}, journal = {Wiley interdisciplinary reviews : Energy and Environment : WIREs}, number = {1}, publisher = {Wiley}, address = {Weinheim}, issn = {2041-840X}, doi = {10.1002/wene.217}, pages = {1 -- 19}, year = {2017}, language = {en} } @techreport{EschDammKalbhenn2013, author = {Esch, Thomas and Damm, Marc Andr{\´e} and Kalbhenn, Hartmut}, title = {Auslegung und Simulation eines Hybridantriebs f{\"u}r den teilelektrischen Betrieb eines Luftfahrzeuges der allgemeinen Luftfahrt : Schlussbericht f{\"u}r das Forschungsvorhaben ; F{\"o}rderperiode 01.07.2009 - 31.05.2012}, address = {Aachen ; Hannover}, doi = {10.2314/GBV:780055411}, pages = {1 Online-Ressource (138 Seiten)}, year = {2013}, language = {de} } @techreport{DammAnthrakidisFend2015, author = {Damm, Marc Andr{\´e} and Anthrakidis, Anette and Fend, Thomas}, title = {Partikelminderungssystem mit einstellbarem Partikelr{\"u}ckhaltegrad : Varytrap : Schlussbericht : Laufzeit: 01.07.2010-28.02.2014}, address = {J{\"u}lich}, doi = {10.2314/GBV:848651863}, pages = {1 Online-Ressource (44 Seiten)}, year = {2015}, language = {de} } @techreport{DammAnthrakidisFend2016, author = {Damm, Marc Andr{\´e} and Anthrakidis, Anette and Fend, Thomas}, title = {Keramische Porenk{\"o}rpersysteme als SCR-Mischer und Hydrolysekatalysator : BMBF-Projekt: Hydromix : Schlussbericht : Laufzeit: 01.10.2011 bis 31.03.2015}, address = {Aachen}, pages = {30 Seiten : Illustrationen, Diagramme}, year = {2016}, language = {de} } @inproceedings{ElMoussaouiKassmiAlexopoulosetal.2021, author = {El Moussaoui, Noureddine and Kassmi, Khalil and Alexopoulos, Spiros and Schwarzer, Klemens and Chayeb, Hamid and Bachiri, Najib}, title = {Simulation studies on a new innovative design of a hybrid solar distiller MSDH alimented with a thermal and photovoltaic energy}, series = {Materialstoday: Proceedings}, volume = {45}, booktitle = {Materialstoday: Proceedings}, number = {8}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2214-7853}, doi = {10.1016/j.matpr.2021.03.115}, pages = {7653 -- 7660}, year = {2021}, abstract = {In this paper, we present the structure, the simulation the operation of a multi-stage, hybrid solar desalination system (MSDH), powered by thermal and photovoltaic (PV) (MSDH) energy. The MSDH system consists of a lower basin, eight horizontal stages, a field of four flat thermal collectors with a total area of 8.4 m2, 3 Kw PV panels and solar batteries. During the day the system is heated by thermal energy, and at night by heating resistors, powered by solar batteries. These batteries are charged by the photovoltaic panels during the day. More specifically, during the day and at night, we analyse the temperature of the stages and the production of distilled water according to the solar irradiation intensity and the electric heating power, supplied by the solar batteries. The simulations were carried out in the meteorological conditions of the winter month (February 2020), presenting intensities of irradiance and ambient temperature reaching 824 W/m2 and 23 °C respectively. The results obtained show that during the day the system is heated by the thermal collectors, the temperature of the stages and the quantity of water produced reach 80 °C and 30 Kg respectively. At night, from 6p.m. the system is heated by the electric energy stored in the batteries, the temperature of the stages and the quantity of water produced reach respectively 90 °C and 104 Kg for an electric heating power of 2 Kw. Moreover, when the electric power varies from 1 Kw to 3 Kw the quantity of water produced varies from 92 Kg to 134 Kg. The analysis of these results and their comparison with conventional solar thermal desalination systems shows a clear improvement both in the heating of the stages, by 10\%, and in the quantity of water produced by a factor of 3.}, language = {en} } @inproceedings{SattlerCaminosUerlingsetal.2020, author = {Sattler, Johannes, Christoph and Caminos, Ricardo Alexander Chico and {\"U}rlings, Nicolas and Dutta, Siddharth and Ruiz, Victor and Kalogirou, Soteris and Ktistis, Panayiotis and Agathokleous, Rafaela and Jung, Christian and Alexopoulos, Spiros and Atti, Vikrama Nagababu and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf}, title = {Operational experience and behaviour of a parabolic trough collector system with concrete thermal energy storage for process steam generation in Cyprus}, series = {AIP Conference Proceedings}, booktitle = {AIP Conference Proceedings}, number = {2303}, doi = {10.1063/5.0029278}, pages = {140004-1 -- 140004-10}, year = {2020}, abstract = {As part of the transnational research project EDITOR, a parabolic trough collector system (PTC) with concrete thermal energy storage (C-TES) was installed and commissioned in Limassol, Cyprus. The system is located on the premises of the beverage manufacturer KEAN Soft Drinks Ltd. and its function is to supply process steam for the factory's pasteurisation process [1]. Depending on the factory's seasonally varying capacity for beverage production, the solar system delivers between 5 and 25 \% of the total steam demand. In combination with the C-TES, the solar plant can supply process steam on demand before sunrise or after sunset. Furthermore, the C-TES compensates the PTC during the day in fluctuating weather conditions. The parabolic trough collector as well as the control and oil handling unit is designed and manufactured by Protarget AG, Germany. The C-TES is designed and produced by CADE Soluciones de Ingenier{\´i}a, S.L., Spain. In the focus of this paper is the description of the operational experience with the PTC, C-TES and boiler during the commissioning and operation phase. Additionally, innovative optimisation measures are presented.}, language = {en} } @inproceedings{RendonSchwagerGhiasietal.2020, author = {Rendon, Carlos and Schwager, Christian and Ghiasi, Mona and Schmitz, Pascal and Bohang, Fakhri and Caminos, Ricardo Alexander Chico and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf}, title = {Modeling and upscaling of a pilot bayonettube reactor for indirect solar mixed methane reforming}, series = {AIP Conference Proceedings}, booktitle = {AIP Conference Proceedings}, number = {2303}, doi = {10.1063/5.0029974}, pages = {170012-1 -- 170012-9}, year = {2020}, abstract = {A 16.77 kW thermal power bayonet-tube reactor for the mixed reforming of methane using solar energy has been designed and modeled. A test bench for the experimental tests has been installed at the Synlight facility in Juelich, Germany and has just been commissioned. This paper presents the solar-heated reactor design for a combined steam and dry reforming as well as a scaled-up process simulation of a solar reforming plant for methanol production. Solar power towers are capable of providing large amounts of heat to drive high-endothermic reactions, and their integration with thermochemical processes shows a promising future. In the designed bayonet-tube reactor, the conventional burner arrangement for the combustion of natural gas has been substituted by a continuous 930 °C hot air stream, provided by means of a solar heated air receiver, a ceramic thermal storage and an auxiliary firing system. Inside the solar-heated reactor, the heat is transferred by means of convective mechanism mainly; instead of radiation mechanism as typically prevailing in fossil-based industrial reforming processes. A scaled-up solar reforming plant of 50.5 MWth was designed and simulated in Dymola® and AspenPlus®. In comparison to a fossil-based industrial reforming process of the same thermal capacity, a solar reforming plant with thermal storage promises a reduction up to 57 \% of annual natural gas consumption in regions with annual DNI-value of 2349 kWh/m2. The benchmark solar reforming plant contributes to a CO2 avoidance of approx. 79 kilotons per year. This facility can produce a nominal output of 734.4 t of synthesis gas and out of this 530 t of methanol a day.}, language = {en} } @inproceedings{OetringerDuemmlerGoettsche2020, author = {Oetringer, Kerstin and D{\"u}mmler, Andreas and G{\"o}ttsche, Joachim}, title = {Neues Modell zur 1D-Simulation der indirekten Verdunstungsk{\"u}hlung}, series = {DKV-Tagung 2020, AA II.1}, booktitle = {DKV-Tagung 2020, AA II.1}, pages = {250 -- 262}, year = {2020}, abstract = {Im Projekt Coolplan- AIR geht es um die Fortentwicklung und Feld- Validierung eines Berechnungs- und Auslegungstools zur energieeffizienten K{\"u}hlung von Geb{\"a}uden mit luftgest{\"u}tzten Systemen. Neben dem Aufbau und der Weiterentwicklung von Simulationsmodellen erfolgen Vermessungen der Gesamtsysteme anhand von Praxisanlagen im Feld. Eine der betrachteten Anlagen arbeitet mit indirekter Verdunstung. Diese Ver{\"o}ffentlichung zeigt den Entwicklungsprozess und den Aufbau des Simulationsmodells zur Verdunstungsk{\"u}hlung in der Simulationsumgebung Matlab- Simulink mit der CARNOT- Toolbox. Das besondere Augenmerk liegt dabei auf dem physikalischen Modell des W{\"a}rme{\"u}bertragers, in dem die Verdunstung implementiert ist. Dem neuen Modellansatz liegt die Annahme einer aus der Enthalpie- Betrachtung hergeleiteten effektiven W{\"a}rmekapazit{\"a}t zugrunde. Des Weiteren wird der Befeuchtungsgrad als konstant angesehen und eine standardisierte Zunahme der W{\"a}rme{\"u}bertragung des feuchten gegen{\"u}ber dem trockenen W{\"a}rme{\"u}bertrager angenommen. Die Validierung des Modells erfolgte anhand von Literaturdaten. F{\"u}r den trockenen W{\"a}rmetauscher ist der maximale absolute Fehler der berechneten Austrittstemperatur (Zuluft) kleiner als ±0.1 K und f{\"u}r den nassen W{\"a}rmetauscher (K{\"u}hlfall) unter der Annahme eines konstanten Verdunstungsgrades kleiner als ±0.4 K.}, language = {de} } @inproceedings{DuemmlerOetringerGoettsche2020, author = {D{\"u}mmler, Andreas and Oetringer, Kerstin and G{\"o}ttsche, Joachim}, title = {Auslegungstool zur energieeffizienten K{\"u}hlung von Geb{\"a}uden}, series = {DKV-Tagung 2020, AA IV}, booktitle = {DKV-Tagung 2020, AA IV}, pages = {1109}, year = {2020}, abstract = {Thematisch widmet sich das Projekt Coolplan- AIR der Fortentwicklung und Feldvalidierung eines Berechnungs- und Auslegungstools zur energieeffizienten K{\"u}hlung von Geb{\"a}uden mit luftgest{\"u}tzten Systemen. Neben dem Aufbau und der Weiterentwicklung von Simulationsmodellen erfolgen Vermessungen der Gesamtsysteme anhand von Praxisanlagen im Feld. Der Schwerpunkt des Projekts liegt auf der Vermessung, Simulation und Integration rein luftgest{\"u}tzter K{\"u}hltechnologien. Im Bereich der K{\"a}lteerzeugung wurden Luft- Luft- W{\"a}rmepumpen, Anlagen zur adiabaten K{\"u}hlung bzw. offene K{\"u}hlt{\"u}rme und VRF- Multisplit- Systeme (Variable Refrigerant Flow) im Feld bzw. auf dem Teststand der HSD vermessen. Die Komponentenmodelle werden in die Matlab/Simulink- Toolbox CARNOT integriert und anschließend auf Basis der zuvor erhaltenen Messdaten validiert. Einerseits erlauben die Messungen das Betriebsverhalten von Anlagenkomponenten zu analysieren. Andererseits soll mit der Vermessung im Feld gepr{\"u}ft werden, inwieweit die Simulationsmodelle, welche im Vorg{\"a}ngerprojekt aus Pr{\"u}fstandmessungen entwickelt wurden, auch f{\"u}r gr{\"o}ßere Ger{\"a}teleistungen G{\"u}ltigkeit besitzen. Die entwickelten und implementierten Systeme, bestehend aus verschiedensten Anlagenmodellen und Regelungskomponenten, werden gepr{\"u}ft und dahingehend qualifiziert, dass sie in Standard- Auslegungstools zuverl{\"a}ssig verwendet werden k{\"o}nnen. Zus{\"a}tzlich wird ein energetisches Monitoring eines H{\"o}rsaalgeb{\"a}udes am Campus J{\"u}lich durchgef{\"u}hrt, das u. a. zur Validierung der K{\"u}hllastberechnungen in g{\"a}ngigen Simulationsmodelle genutzt werden kann.}, language = {de} } @article{GoettscheAlexopoulosDuemmleretal.2019, author = {G{\"o}ttsche, Joachim and Alexopoulos, Spiros and D{\"u}mmler, Andreas and Maddineni, S. K.}, title = {Multi-Mirror Array Calculations With Optical Error}, pages = {1 -- 6}, year = {2019}, abstract = {The optical performance of a 2-axis solar concentrator was simulated with the COMSOL Multiphysics® software. The concentrator consists of a mirror array, which was created using the application builder. The mirror facets are preconfigured to form a focal point. During tracking all mirrors are moved simultaneously in a coupled mode by 2 motors in two axes, in order to keep the system in focus with the moving sun. Optical errors on each reflecting surface were implemented in combination with the solar angular cone of ± 4.65 mrad. As a result, the intercept factor of solar radiation that is available to the receiver was calculated as a function of the transversal and longitudinal angles of incidence. In addition, the intensity distribution on the receiver plane was calculated as a function of the incidence angles.}, language = {en} } @techreport{GhinaiyaLehmannGoettsche2022, author = {Ghinaiya, Jagdishkumar and Lehmann, Thomas and G{\"o}ttsche, Joachim}, title = {LOCAL+ - ein kreislauff{\"a}higer Holzmodulbau mit nachhaltigem Energie- und Wohnraumkonzept}, series = {Bauphysik}, volume = {44}, journal = {Bauphysik}, number = {3}, publisher = {Ernst \& Sohn}, address = {Hoboken}, issn = {0171-5445 (Print)}, doi = {10.1002/bapi.202200010}, pages = {136 -- 142}, year = {2022}, abstract = {Mit dem Beitrag des Teams der FH Aachen zum SDE 21/22 wird im Projekt LOCAL+ ein kreislauff{\"a}higer Holzmodulbau mit einem innovativen Wohnraumkonzept geplant und umgesetzt. Ziel dieses Konzeptes ist die Verringerung des stetig steigenden Wohnfl{\"a}chenbedarfs durch ein Raum-in-Raum Konzept. Geb{\"a}udetechnisch wird in dem Projekt nicht nur das Einzelgeb{\"a}ude betrachtet, sondern unter Ber{\"u}cksichtigung des Geb{\"a}udebestandes wird f{\"u}r das Quartier ein innovatives und nachhaltiges Energiekonzept entwickelt. Ein zentrales Wasserstoffsystem ist f{\"u}r ein Quartier geplant, um den Stromverbrauch aus dem Netz im Winter zu reduzieren. Zentraler Bestandteil des TGA-Konzepts ist ein unterirdischer Eisspeicher, eine PVT und eine W{\"a}rmepumpe mit intelligenter Regelstrategie. Ein Teil des neuen Geb{\"a}udes (Design Challenge DC) wird in Wuppertal als Hausdemonstrationseinheit (HDU) pr{\"a}sentiert. Eine hygrothermische Simulation der HDU wurde mit der WUFI-Software durchgef{\"u}hrt. Da im Innenraum Lehmmodule und -platten als Feuchtigkeitspuffer verwendet werden, spielen die Themen Feuchtigkeit, Holzf{\"a}ule und Schimmelwachstum eine wichtige Rolle.}, language = {de} } @article{GorzalkaSchmiedtSchorn2021, author = {Gorzalka, Philip and Schmiedt, Jacob Estevam and Schorn, Christian}, title = {Automated Generation of an Energy Simulation Model for an Existing Building from UAV Imagery}, series = {Buildings}, volume = {11}, journal = {Buildings}, number = {9}, publisher = {MDPI}, address = {Basel}, issn = {2075-5309}, doi = {10.3390/buildings11090380}, pages = {15 Seiten}, year = {2021}, abstract = {An approach to automatically generate a dynamic energy simulation model in Modelica for a single existing building is presented. It aims at collecting data about the status quo in the preparation of energy retrofits with low effort and costs. The proposed method starts from a polygon model of the outer building envelope obtained from photogrammetrically generated point clouds. The open-source tools TEASER and AixLib are used for data enrichment and model generation. A case study was conducted on a single-family house. The resulting model can accurately reproduce the internal air temperatures during synthetical heating up and cooling down. Modelled and measured whole building heat transfer coefficients (HTC) agree within a 12\% range. A sensitivity analysis emphasises the importance of accurate window characterisations and justifies the use of a very simplified interior geometry. Uncertainties arising from the use of archetype U-values are estimated by comparing different typologies, with best- and worst-case estimates showing differences in pre-retrofit heat demand of about ±20\% to the average; however, as the assumptions made are permitted by some national standards, the method is already close to practical applicability and opens up a path to quickly estimate possible financial and energy savings after refurbishment.}, language = {en} } @article{PeereBlanke2022, author = {Peere, Wouter and Blanke, Tobias}, title = {GHEtool: An open-source tool for borefield sizing in Python}, series = {Journal of Open Source Software}, volume = {7}, journal = {Journal of Open Source Software}, number = {76}, editor = {Vernon, Chris}, issn = {2475-9066}, doi = {10.21105/joss.04406}, pages = {1 -- 4, 4406}, year = {2022}, abstract = {GHEtool is a Python package that contains all the functionalities needed to deal with borefield design. It is developed for both researchers and practitioners. The core of this package is the automated sizing of borefield under different conditions. The sizing of a borefield is typically slow due to the high complexity of the mathematical background. Because this tool has a lot of precalculated data, GHEtool can size a borefield in the order of tenths of milliseconds. This sizing typically takes the order of minutes. Therefore, this tool is suited for being implemented in typical workflows where iterations are required. GHEtool also comes with a graphical user interface (GUI). This GUI is prebuilt as an exe-file because this provides access to all the functionalities without coding. A setup to install the GUI at the user-defined place is also implemented and available at: https://www.mech.kuleuven.be/en/tme/research/thermal_systems/tools/ghetool.}, language = {en} } @inproceedings{BlankeSchmidtGoettscheetal.2022, author = {Blanke, Tobias and Schmidt, Katharina S. and G{\"o}ttsche, Joachim and D{\"o}ring, Bernd and Frisch, J{\´e}r{\^o}me and van Treeck, Christoph}, title = {Time series aggregation for energy system design: review and extension of modelling seasonal storages}, series = {Energy Informatics}, volume = {5}, booktitle = {Energy Informatics}, number = {1, Article number: 17}, editor = {Weidlich, Anke and Neumann, Dirk and Gust, Gunther and Staudt, Philipp and Sch{\"a}fer, Mirko}, publisher = {Springer Nature}, issn = {2520-8942}, doi = {10.1186/s42162-022-00208-5}, pages = {14 Seiten}, year = {2022}, abstract = {Using optimization to design a renewable energy system has become a computationally demanding task as the high temporal fluctuations of demand and supply arise within the considered time series. The aggregation of typical operation periods has become a popular method to reduce effort. These operation periods are modelled independently and cannot interact in most cases. Consequently, seasonal storage is not reproducible. This inability can lead to a significant error, especially for energy systems with a high share of fluctuating renewable energy. The previous paper, "Time series aggregation for energy system design: Modeling seasonal storage", has developed a seasonal storage model to address this issue. Simultaneously, the paper "Optimal design of multi-energy systems with seasonal storage" has developed a different approach. This paper aims to review these models and extend the first model. The extension is a mathematical reformulation to decrease the number of variables and constraints. Furthermore, it aims to reduce the calculation time while achieving the same results.}, language = {en} }