@inproceedings{RendonSchwagerGhiasietal.2020, author = {Rendon, Carlos and Schwager, Christian and Ghiasi, Mona and Schmitz, Pascal and Bohang, Fakhri and Chico Caminos, Ricardo Alexander and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf}, title = {Modeling and upscaling of a pilot bayonettube reactor for indirect solar mixed methane reforming}, series = {AIP Conference Proceedings}, booktitle = {AIP Conference Proceedings}, number = {2303}, doi = {10.1063/5.0029974}, pages = {170012-1 -- 170012-9}, year = {2020}, abstract = {A 16.77 kW thermal power bayonet-tube reactor for the mixed reforming of methane using solar energy has been designed and modeled. A test bench for the experimental tests has been installed at the Synlight facility in Juelich, Germany and has just been commissioned. This paper presents the solar-heated reactor design for a combined steam and dry reforming as well as a scaled-up process simulation of a solar reforming plant for methanol production. Solar power towers are capable of providing large amounts of heat to drive high-endothermic reactions, and their integration with thermochemical processes shows a promising future. In the designed bayonet-tube reactor, the conventional burner arrangement for the combustion of natural gas has been substituted by a continuous 930 °C hot air stream, provided by means of a solar heated air receiver, a ceramic thermal storage and an auxiliary firing system. Inside the solar-heated reactor, the heat is transferred by means of convective mechanism mainly; instead of radiation mechanism as typically prevailing in fossil-based industrial reforming processes. A scaled-up solar reforming plant of 50.5 MWth was designed and simulated in Dymola® and AspenPlus®. In comparison to a fossil-based industrial reforming process of the same thermal capacity, a solar reforming plant with thermal storage promises a reduction up to 57 \% of annual natural gas consumption in regions with annual DNI-value of 2349 kWh/m2. The benchmark solar reforming plant contributes to a CO2 avoidance of approx. 79 kilotons per year. This facility can produce a nominal output of 734.4 t of synthesis gas and out of this 530 t of methanol a day.}, language = {en} } @inproceedings{GedleSchmitzGielenetal.2022, author = {Gedle, Yibekal and Schmitz, Mark and Gielen, Hans and Schmitz, Pascal and Herrmann, Ulf and Teixeira Boura, Cristiano Jos{\´e} and Mahdi, Zahra and Chico Caminos, Ricardo Alexander and Dersch, J{\"u}rgen}, title = {Analysis of an integrated CSP-PV hybrid power plant}, series = {SOLARPACES 2020}, booktitle = {SOLARPACES 2020}, number = {2445 / 1}, publisher = {AIP conference proceedings / American Institute of Physics}, address = {Melville, NY}, isbn = {978-0-7354-4195-8}, issn = {1551-7616 (online)}, doi = {10.1063/5.0086236}, pages = {9 Seiten}, year = {2022}, abstract = {In the past, CSP and PV have been seen as competing technologies. Despite massive reductions in the electricity generation costs of CSP plants, PV power generation is - at least during sunshine hours - significantly cheaper. If electricity is required not only during the daytime, but around the clock, CSP with its inherent thermal energy storage gets an advantage in terms of LEC. There are a few examples of projects in which CSP plants and PV plants have been co-located, meaning that they feed into the same grid connection point and ideally optimize their operation strategy to yield an overall benefit. In the past eight years, TSK Flagsol has developed a plant concept, which merges both solar technologies into one highly Integrated CSP-PV-Hybrid (ICPH) power plant. Here, unlike in simply co-located concepts, as analyzed e.g. in [1] - [4], excess PV power that would have to be dumped is used in electric molten salt heaters to increase the storage temperature, improving storage and conversion efficiency. The authors demonstrate the electricity cost sensitivity to subsystem sizing for various market scenarios, and compare the resulting optimized ICPH plants with co-located hybrid plants. Independent of the three feed-in tariffs that have been assumed, the ICPH plant shows an electricity cost advantage of almost 20\% while maintaining a high degree of flexibility in power dispatch as it is characteristic for CSP power plants. As all components of such an innovative concept are well proven, the system is ready for commercial market implementation. A first project is already contracted and in early engineering execution.}, language = {en} } @inproceedings{NiederwestbergSchneiderTeixeiraBouraetal.2022, author = {Niederwestberg, Stefan and Schneider, Falko and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf}, title = {Introduction to a direct irradiated transparent tube particle receiver}, series = {SOLARPACES 2020}, booktitle = {SOLARPACES 2020}, number = {2445 / 1}, publisher = {AIP conference proceedings / American Institute of Physics}, address = {Melville, NY}, isbn = {978-0-7354-4195-8}, issn = {1551-7616 (online)}, doi = {10.1063/5.0086735}, pages = {9 Seiten}, year = {2022}, abstract = {New materials often lead to innovations and advantages in technical applications. This also applies to the particle receiver proposed in this work that deploys high-temperature and scratch resistant transparent ceramics. With this receiver design, particles are heated through direct-contact concentrated solar irradiance while flowing downwards through tubular transparent ceramics from top to bottom. In this paper, the developed particle receiver as well as advantages and disadvantages are described. Investigations on the particle heat-up characteristics from solar irradiance were carried out with DEM simulations which indicate that particle temperatures can reach up to 1200 K. Additionally, a simulation model was set up for investigating the dynamic behavior. A test receiver at laboratory scale has been designed and is currently being built. In upcoming tests, the receiver test rig will be used to validate the simulation results. The design and the measurement equipment is described in this work.}, language = {en} } @inproceedings{GoettscheRoether2014, author = {G{\"o}ttsche, Joachim and R{\"o}ther, Sascha}, title = {Science College Overbach - Innovatives Bildungszentrum in J{\"u}lich-Barmen}, series = {18. Internationale Passivhaustagung, Aachen, April 2014}, booktitle = {18. Internationale Passivhaustagung, Aachen, April 2014}, pages = {6 Seiten}, year = {2014}, abstract = {Preprint der Autoren}, language = {de} } @inproceedings{BreitbachAlexopoulosHoffschmidt2007, author = {Breitbach, Gerd and Alexopoulos, Spiros and Hoffschmidt, Bernhard}, title = {Fluid flow in porous ceramic multichannel crossflower filter modules}, publisher = {COMSOL Inc.}, address = {Burlington, Mass.}, pages = {5 S.}, year = {2007}, language = {en} } @inproceedings{VaessenAlexopoulosKluczkaetal.2011, author = {Vaeßen, Christiane and Alexopoulos, Spiros and Kluczka, Sven and Sattler, Johannes Christoph and Roeb, M. and Neises, M. and Abdellatif, T.}, title = {Analyse der Verfahren zur solaren Methanolproduktion aus CO2}, series = {Forschung und Entwicklung f{\"u}r solarthermische Kraftwerke : 14. K{\"o}lner Sonnenkolloquium Mittwoch, 13. Juli 2011, im Auditorium des Campus J{\"u}lich der FH Aachen : Kurzfassungen der Vortr{\"a}ge und Poster}, booktitle = {Forschung und Entwicklung f{\"u}r solarthermische Kraftwerke : 14. K{\"o}lner Sonnenkolloquium Mittwoch, 13. Juli 2011, im Auditorium des Campus J{\"u}lich der FH Aachen : Kurzfassungen der Vortr{\"a}ge und Poster}, publisher = {DLR}, address = {K{\"o}ln}, pages = {2 S.}, year = {2011}, language = {de} } @inproceedings{WarerkarSchmitzGoettscheetal.2008, author = {Warerkar, S. and Schmitz, S. and G{\"o}ttsche, Joachim and Hoffschmidt, Bernhard and Tamme, R.}, title = {Performance analysis of an air-sand heat exchanger prototype for high-temperature storage}, series = {EuroSun 2008 : 1st International Conference on Solar Heating, Cooling and Buildings ; 7th - 10th October 2008, Lisbon, Portugal : key lectures / ISES, International Solar Energy Society. Vol. 1}, booktitle = {EuroSun 2008 : 1st International Conference on Solar Heating, Cooling and Buildings ; 7th - 10th October 2008, Lisbon, Portugal : key lectures / ISES, International Solar Energy Society. Vol. 1}, publisher = {Sociedade Portuguesa De Energia Solar (SPES)}, address = {Lissabon}, isbn = {978-1-61782-228-5}, pages = {2215 -- 2222}, year = {2008}, language = {en} } @inproceedings{KruegerAnthrakidisFischeretal.2009, author = {Kr{\"u}ger, Dirk and Anthrakidis, Anette and Fischer, Stephan and Lokurlu, Ahmet and Walder, Markus and Croy, Reiner and Quaschning, Volker}, title = {Experiences with solar steam supply for an industrial steam network in the P3 Project}, series = {SolarPACES 2009 : electricity, fuels and clean water powered by the sun ; 15 - 18 September 2009, Berlin, Germany ; the 15th SolarPACES conference ; proceedings}, booktitle = {SolarPACES 2009 : electricity, fuels and clean water powered by the sun ; 15 - 18 September 2009, Berlin, Germany ; the 15th SolarPACES conference ; proceedings}, publisher = {Deutsches Zentrum f. Luft- u. Raumfahrt}, address = {Stuttgart}, isbn = {9783000287558}, pages = {1 CD-ROM}, year = {2009}, language = {en} } @inproceedings{BlankeSchmidtGoettscheetal.2022, author = {Blanke, Tobias and Schmidt, Katharina S. and G{\"o}ttsche, Joachim and D{\"o}ring, Bernd and Frisch, J{\´e}r{\^o}me and van Treeck, Christoph}, title = {Time series aggregation for energy system design: review and extension of modelling seasonal storages}, series = {Energy Informatics}, volume = {5}, booktitle = {Energy Informatics}, number = {1, Article number: 17}, editor = {Weidlich, Anke and Neumann, Dirk and Gust, Gunther and Staudt, Philipp and Sch{\"a}fer, Mirko}, publisher = {Springer Nature}, issn = {2520-8942}, doi = {10.1186/s42162-022-00208-5}, pages = {14 Seiten}, year = {2022}, abstract = {Using optimization to design a renewable energy system has become a computationally demanding task as the high temporal fluctuations of demand and supply arise within the considered time series. The aggregation of typical operation periods has become a popular method to reduce effort. These operation periods are modelled independently and cannot interact in most cases. Consequently, seasonal storage is not reproducible. This inability can lead to a significant error, especially for energy systems with a high share of fluctuating renewable energy. The previous paper, "Time series aggregation for energy system design: Modeling seasonal storage", has developed a seasonal storage model to address this issue. Simultaneously, the paper "Optimal design of multi-energy systems with seasonal storage" has developed a different approach. This paper aims to review these models and extend the first model. The extension is a mathematical reformulation to decrease the number of variables and constraints. Furthermore, it aims to reduce the calculation time while achieving the same results.}, language = {en} } @inproceedings{GoettscheHoffschmidtSchmitzetal.2008, author = {G{\"o}ttsche, Joachim and Hoffschmidt, Bernhard and Schmitz, S. and Sauerborn, Markus and Rebholz, C. and Iffland, D. and Badst{\"u}bner, R. and Buck, R. and Teufel, E.}, title = {Test of a mini-mirror array for solar concentrating systems}, series = {EuroSun 2008 : 1st International Conference on Solar Heating, Cooling and Buildings ; 7th - 10th October 2008, Lisbon, Portugal : key lectures / ISES, International Solar Energy Society. Vol. 1}, booktitle = {EuroSun 2008 : 1st International Conference on Solar Heating, Cooling and Buildings ; 7th - 10th October 2008, Lisbon, Portugal : key lectures / ISES, International Solar Energy Society. Vol. 1}, publisher = {Sociedade Portuguesa De Energia Solar (SPES)}, address = {Lissabon}, isbn = {978-1-61782-228-5}, pages = {1242 -- 1250}, year = {2008}, language = {en} }