@article{GoettscheHoffschmidtBoehnischetal.2005, author = {G{\"o}ttsche, Joachim and Hoffschmidt, Bernhard and B{\"o}hnisch, Helmut and Herkel, Sebastian}, title = {Solarisierung von Altbauten / Bernhard Hoffschmidt ; Helmut B{\"o}hnisch ; Joachim G{\"o}ttsche ; Sebastian Herkel}, series = {W{\"a}rme und K{\"a}lte - Energie aus Sonne und Erde : Jahrestagung des Forschungsverbunds Sonnenenergie in Kooperation mit der Landesinitiative Zukunftsenergie NRW / Stadermann, Gerd, Hrsg.}, journal = {W{\"a}rme und K{\"a}lte - Energie aus Sonne und Erde : Jahrestagung des Forschungsverbunds Sonnenenergie in Kooperation mit der Landesinitiative Zukunftsenergie NRW / Stadermann, Gerd, Hrsg.}, publisher = {Forschungsverbund Sonnenenergie}, address = {Berlin}, pages = {99 -- 105}, year = {2005}, language = {de} } @article{HerrmannKellyPrice2002, author = {Herrmann, Ulf and Kelly, Bruce and Price, Henry}, title = {Two Tank Molten Salt Storage for Parabolic Trough Solar Power Plants}, series = {Energy : the international journal}, volume = {29}, journal = {Energy : the international journal}, number = {5-6 (Special Issue SolarPaces)}, issn = {0360-5442}, doi = {10.1016/S0360-5442(03)00193-2}, pages = {883 -- 893}, year = {2002}, language = {en} } @article{HerrmannSchwarzenbartDittmannGabrieletal.2019, author = {Herrmann, Ulf and Schwarzenbart, Marc and Dittmann-Gabriel, S{\"o}ren and May, Martin}, title = {Hochtemperatur-W{\"a}rmespeicher f{\"u}r die Strom- und W{\"a}rmewende}, series = {Solarzeitalter : Politik, Kultur und {\"O}konomie erneuerbarer Energien}, volume = {31}, journal = {Solarzeitalter : Politik, Kultur und {\"O}konomie erneuerbarer Energien}, number = {2}, issn = {0937-3802}, pages = {18 -- 23}, year = {2019}, language = {de} } @article{DerschGeyerHerrmannetal.2004, author = {Dersch, J{\"u}rgen and Geyer, Michael and Herrmann, Ulf and Jones, Scott A. and Kelly, Bruce and Kistner, Rainer and Ortmanns, Winfried and Pitz-Paal, Robert and Price, Henry}, title = {Trough integration into power plants—a study on the performance and economy of integrated solar combined cycle systems}, series = {Energy : the international journal}, volume = {29}, journal = {Energy : the international journal}, number = {5-6 (Special Issue SolarPaces)}, issn = {0360-5442}, doi = {10.1016/S0360-5442(03)00199-3}, pages = {947 -- 959}, year = {2004}, language = {en} } @article{PuppeGiulianoFrantzetal.2018, author = {Puppe, Michael and Giuliano, Stefano and Frantz, Cathy and Uhlig, Ralf and Schumacher, Ralph and Ibraheem, Wagdi and Schmalz, Stefan and Waldmann, Barbara and Guder, Christoph and Peter, Dennis and Schwager, Christian and Teixeira Boura, Cristiano Jos{\´e} and Alexopoulos, Spiros and Spiegel, Michael and Wortmann, J{\"u}rgen and Hinrichs, Matthias and Engelhard, Manfred and Aust, Michael}, title = {Techno-economic optimization of molten salt solar tower plants}, series = {AIP Conference Proceedings art.no. 040033}, volume = {2033}, journal = {AIP Conference Proceedings art.no. 040033}, number = {Issue 1}, publisher = {AIP Publishing}, address = {Melville, NY}, doi = {10.1063/1.5067069}, year = {2018}, abstract = {In this paper the results of a techno-economic analysis of improved and optimized molten salt solar tower plants (MSSTP plants) are presented. The potential improvements that were analyzed include different receiver designs, different designs of the HTF-system and plant control, increased molten salt temperatures (up to 640°C) and multi-tower systems. Detailed technological and economic models of the solar field, solar receiver and high temperature fluid system (HTF-system) were developed and used to find potential improvements compared to a reference plant based on Solar Two technology and up-to-date cost estimations. The annual yield model calculates the annual outputs and the LCOE of all variants. An improved external tubular receiver and improved HTF-system achieves a significant decrease of LCOE compared to the reference. This is caused by lower receiver cost as well as improvements of the HTF-system and plant operation strategy, significantly reducing the plant own consumption. A novel star receiver shows potential for further cost decrease. The cavity receiver concepts result in higher LCOE due to their high investment cost, despite achieving higher efficiencies. Increased molten salt temperatures seem possible with an adapted, closed loop HTF-system and achieve comparable results to the original improved system (with 565°C) under the given boundary conditions. In this analysis all multi tower systems show lower economic viability compared to single tower systems, caused by high additional cost for piping connections and higher cost of the receivers. REFERENCES}, language = {en} } @article{GorzalkaSchmiedtSchorn2021, author = {Gorzalka, Philip and Schmiedt, Jacob Estevam and Schorn, Christian}, title = {Automated Generation of an Energy Simulation Model for an Existing Building from UAV Imagery}, series = {Buildings}, volume = {11}, journal = {Buildings}, number = {9}, publisher = {MDPI}, address = {Basel}, issn = {2075-5309}, doi = {10.3390/buildings11090380}, pages = {15 Seiten}, year = {2021}, abstract = {An approach to automatically generate a dynamic energy simulation model in Modelica for a single existing building is presented. It aims at collecting data about the status quo in the preparation of energy retrofits with low effort and costs. The proposed method starts from a polygon model of the outer building envelope obtained from photogrammetrically generated point clouds. The open-source tools TEASER and AixLib are used for data enrichment and model generation. A case study was conducted on a single-family house. The resulting model can accurately reproduce the internal air temperatures during synthetical heating up and cooling down. Modelled and measured whole building heat transfer coefficients (HTC) agree within a 12\% range. A sensitivity analysis emphasises the importance of accurate window characterisations and justifies the use of a very simplified interior geometry. Uncertainties arising from the use of archetype U-values are estimated by comparing different typologies, with best- and worst-case estimates showing differences in pre-retrofit heat demand of about ±20\% to the average; however, as the assumptions made are permitted by some national standards, the method is already close to practical applicability and opens up a path to quickly estimate possible financial and energy savings after refurbishment.}, language = {en} } @article{GoettscheHove1999, author = {G{\"o}ttsche, Joachim and Hove, T.}, title = {Mapping global, diffuse and beam solar radiation over Zimbabwe / T. Hove ; J. G{\"o}ttsche}, series = {Renewable energy. 18 (1999), H. 4}, journal = {Renewable energy. 18 (1999), H. 4}, isbn = {1879-0682}, pages = {535 -- 556}, year = {1999}, language = {en} } @article{Goettsche1994, author = {G{\"o}ttsche, Joachim}, title = {Eldorado summer schools}, series = {Progress in solar energy education. 3 (1994)}, journal = {Progress in solar energy education. 3 (1994)}, isbn = {1018-5607}, pages = {31 -- 33}, year = {1994}, language = {en} } @article{GoettscheDelahayeGabryschetal.2003, author = {G{\"o}ttsche, Joachim and Delahaye, A. and Gabrysch, K. and Schwarzer, Klemens}, title = {Solar-Campus J{\"u}lich - Nutzung solarer Gewinne in Geb{\"a}uden}, series = {13. Symposium Thermische Solarenergie : 14. bis 16. Mai 2003, Kloster Banz / [Wiss. Gesamtleitung: Hans M{\"u}ller-Steinhagen]. Otti-Energie-Kolleg}, journal = {13. Symposium Thermische Solarenergie : 14. bis 16. Mai 2003, Kloster Banz / [Wiss. Gesamtleitung: Hans M{\"u}ller-Steinhagen]. Otti-Energie-Kolleg}, publisher = {Ostbayerisches Technologie-Transfer-Inst., OTTI}, address = {Regensburg}, isbn = {3-934681-26-3}, pages = {362 -- 367}, year = {2003}, language = {de} } @article{GoettscheGoetzbergerDengleretal.1992, author = {G{\"o}ttsche, Joachim and Goetzberger, Adolf and Dengler, J. and Rommel, M. (u.a.)}, title = {A new transparently insulated, bifacially irradiated solar flat-plate collector / A. Goetzberger ; J. Dengler ; M. Rommel ; J. G{\"o}ttsche ; V. Wittwer}, series = {Solar energy. 49 (1992), H. 5}, journal = {Solar energy. 49 (1992), H. 5}, isbn = {0038-092X}, pages = {403 -- 411}, year = {1992}, language = {en} } @article{MeyerHaenelBeehetal.2020, author = {Meyer, S. and H{\"a}nel, Matthias and Beeh, B. and Dittmann-Gabriel, S{\"o}ren and Dluhosch, R. and May, Martin and Herrmann, Ulf}, title = {Multifunktionaler thermischer Stromspeicher f{\"u}r die Strom- und W{\"a}rmeversorgung der Industrie von morgen}, series = {ETG Journal / Energietechnische Gesellschaft im VDE (ETG)}, volume = {2020}, journal = {ETG Journal / Energietechnische Gesellschaft im VDE (ETG)}, number = {1}, issn = {2625-9907}, pages = {6 -- 9}, year = {2020}, language = {de} } @article{HerrmannKearney2002, author = {Herrmann, Ulf and Kearney, David W.}, title = {Survey of Thermal Energy Storage for Parabolic Trough Power Plants}, series = {Journal of Solar Energy Engineering}, volume = {124}, journal = {Journal of Solar Energy Engineering}, number = {2}, issn = {1528-8986 (Online)}, doi = {10.1115/1.1467601}, pages = {145 -- 152}, year = {2002}, language = {en} } @article{KearneyKellyHerrmannetal.2002, author = {Kearney, David W. and Kelly, Bruce and Herrmann, Ulf and Cable, R. and Pacheco, J. and Mahoney, R. and Price, Henry and Blake, D. and Nava, P. and Potrovitza, N.}, title = {Engineering Aspects of a Molten Salt Heat Transfer Fluid in a Trough Solar Field}, series = {Energy : the international journal}, volume = {29}, journal = {Energy : the international journal}, number = {5-6 (Special Issue SolarPaces)}, issn = {0360-5442}, doi = {10.1016/S0360-5442(03)00191-9}, pages = {861 -- 870}, year = {2002}, language = {en} } @article{DammSauerbornFendetal.2017, author = {Damm, Marc Andr{\´e} and Sauerborn, Markus and Fend, Thomas and Herrmann, Ulf}, title = {Optimisation of a urea selective catalytic reduction system with a coated ceramic mixing element}, series = {Journal of ceramic science and technology}, volume = {8}, journal = {Journal of ceramic science and technology}, number = {1}, publisher = {G{\"o}ller}, address = {Baden-Baden}, isbn = {2190-9385 (Print)}, issn = {2190-9385 (Online)}, doi = {10.4416/JCST2016-00056}, pages = {19 -- 24}, year = {2017}, language = {en} } @article{RegerKuhnhenneHachuletal.2019, author = {Reger, Vitali and Kuhnhenne, Markus and Hachul, Helmut and D{\"o}ring, Bernd and Blanke, Tobias and G{\"o}ttsche, Joachim}, title = {Plusenergiegeb{\"a}ude 2.0 in Stahlleichtbauweise}, series = {Stahlbau}, volume = {88}, journal = {Stahlbau}, number = {6}, publisher = {Ernst \& Sohn}, address = {Berlin}, issn = {1437-1049 (E-journal), 0038-9145 (print)}, doi = {10.1002/stab.201900034}, pages = {522 -- 528}, year = {2019}, language = {de} } @article{HerrmannLippke1999, author = {Herrmann, Ulf and Lippke, F.}, title = {The influence of transients on the design of DSG solar fields}, series = {Journal de Physique IV : proceedings}, volume = {9}, journal = {Journal de Physique IV : proceedings}, number = {PR3}, isbn = {2-86883-402-7}, issn = {1764-7177 (Online)}, doi = {10.1051/jp4:1999377}, pages = {489 -- 494}, year = {1999}, language = {en} } @article{HerrmannNava2005, author = {Herrmann, Ulf and Nava, P.}, title = {Die Strahlung der Sonne einfangen}, series = {DLR-Nachrichten / Deutsches Zentrum f{\"u}r Luft- und Raumfahrt}, volume = {109}, journal = {DLR-Nachrichten / Deutsches Zentrum f{\"u}r Luft- und Raumfahrt}, number = {Sonderheft Solarforschung}, issn = {0937-0420}, pages = {34 -- 37}, year = {2005}, language = {de} }