@article{MuribTranCeunincketal.2012, author = {Murib, Mohammed S. and Tran, Anh Quang and Ceuninck, Ward de and Sch{\"o}ning, Michael Josef and Nesladek, Milos and Serpeng{\"u}zel, Ali and Wagner, Patrick}, title = {Analysis of an optical biosensor based on elastic light scattering from diamond-, glass-, and sapphire microspheres}, series = {Physica Status Solidi A}, volume = {209}, journal = {Physica Status Solidi A}, number = {9}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201100795}, pages = {1804 -- 1810}, year = {2012}, abstract = {Deoxyribonucleic acid (DNA) and protein recognition are now standard tools in biology. In addition, the special optical properties of microsphere resonators expressed by the high quality factor (Q-factor) of whispering gallery modes (WGMs) or morphology dependent resonances (MDRs) have attracted the attention of the biophotonic community. Microsphere-based biosensors are considered as powerful candidates to achieve label-free recognition of single molecules due to the high sensitivity of their WGMs. When the microsphere surface is modified with biomolecules, the effective refractive index and the effective size of the microsphere change resulting in a resonant wavelength shift. The transverse electric (TE) and the transverse magnetic (TM) elastic light scattering intensity of electromagnetic waves at 600 and 1400 nm are numerically calculated for DNA and unspecific binding of proteins to the microsphere surface. The effect of changing the optical properties was studied for diamond (refractive index 2.34), glass (refractive index 1.50), and sapphire (refractive index 1.75) microspheres with a 50 µm radius. The mode spacing, the linewidth of WGMs, and the shift of resonant wavelength due to the change in radius and refractive index, were analyzed by numerical simulations. Preliminary results of unspecific binding of biomolecules are presented. The calculated shift in WGMs can be used for biomolecules detection.}, language = {en} } @article{HuckPoghossianWagneretal.2012, author = {Huck, Christina and Poghossian, Arshak and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Combined amperometric/field-effect sensor for the detection of dissolved hydrogen}, series = {Sensors and actuators B: Chemical}, volume = {187}, journal = {Sensors and actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2012.10.050}, pages = {168 -- 173}, year = {2012}, abstract = {Real-time and reliable monitoring of the biogas process is crucial for a stable and efficient operation of biogas production in order to avoid digester breakdowns. The concentration of dissolved hydrogen (H₂) represents one of the key parameters for biogas process control. In this work, a one-chip integrated combined amperometric/field-effect sensor for monitoring the dissolved H₂ concentration has been developed for biogas applications. The combination of two different transducer principles might allow a more accurate and reliable measurement of dissolved H₂ as an early warning indicator of digester failures. The feasibility of the approach has been demonstrated by simultaneous amperometric/field-effect measurements of dissolved H₂ concentrations in electrolyte solutions. Both, the amperometric and the field-effect transducer show a linear response behaviour in the H₂ concentration range from 0.1 to 3\% (v/v) with a slope of 198.4 ± 13.7 nA/\% (v/v) and 14.9 ± 0.5 mV/\% (v/v), respectively.}, language = {en} } @article{AbouzarPoghossianCherstvyetal.2012, author = {Abouzar, Maryam H. and Poghossian, Arshak and Cherstvy, Andrey G. and Pedraza, Angela M. and Ingebrandt, Sven and Sch{\"o}ning, Michael Josef}, title = {Label-free electrical detection of DNA by means of field-effect nanoplate capacitors: Experiments and modeling}, series = {Physica Status Solidi (a)}, volume = {209}, journal = {Physica Status Solidi (a)}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201100710}, pages = {925 -- 934}, year = {2012}, abstract = {Label-free electrical detection of consecutive deoxyribonucleic acid (DNA) hybridization/denaturation by means of an array of individually addressable field-effect-based nanoplate silicon-on-insulator (SOI) capacitors modified with gold nanoparticles (Au-NP) is investigated. The proposed device detects charge changes on Au-NP/DNA hybrids induced by the hybridization or denaturation event. DNA hybridization was performed in a high ionic-strength solution to provide a high hybridization efficiency. On the other hand, to reduce the screening of the DNA charge by counter ions and to achieve a high sensitivity, the sensor signal induced by the hybridization and denaturation events was measured in a low ionic-strength solution. High sensor signals of about 120, 90, and 80 mV were registered after the DNA hybridization, denaturation, and re-hybridization events, respectively. Fluorescence microscopy has been applied as reference method to verify the DNA immobilization, hybridization, and denaturation processes. An electrostatic charge-plane model for potential changes at the gate surface of a nanoplate field-effect sensor induced by the DNA hybridization has been developed taking into account both the Debye length and the distance of the DNA charge from the gate surface.}, language = {en} } @inproceedings{YoshinobuMiyamotoWagneretal.2012, author = {Yoshinobu, Tatsuo and Miyamoto, Ko-Ichiro and Wagner, Torsten and Sch{\"o}ning, Michael Josef}, title = {Miniaturized and high-speed chemical imaging systems}, series = {Nano-Biomedical Engineering 2012. Proceedings of the Tohoku University Global Centre of Excellence Programme, Sakura Hall, Tohoku University, Sendai Japan, 5 - 6 March 2012}, booktitle = {Nano-Biomedical Engineering 2012. Proceedings of the Tohoku University Global Centre of Excellence Programme, Sakura Hall, Tohoku University, Sendai Japan, 5 - 6 March 2012}, editor = {Yamaguchi, Takami}, publisher = {World Scientific}, address = {Singapur}, doi = {10.1142/9781848169067_0045}, pages = {386 -- 395}, year = {2012}, language = {en} } @article{GrinsvenBonStrauvenetal.2012, author = {Grinsven, Bart van and Bon, Natalie vanden and Strauven, Hannelore and Grieten, Lars and Murib, Mohammed and Jim{\´e}nez Monroy, Kathia L. and Janssens, Stoffel D. and Haenen, Ken and Sch{\"o}ning, Michael Josef and Vermeeren, Veronique and Ameloot, Marcel and Michiels, Luc and Thoelen, Ronald and Ceuninck, Ward de and Wagner, Patrick}, title = {Heat-Transfer Resistance at Solid-Liquid Interfaces: A Tool for The Detection of Single Nucleotide Polymorphisms in DNA.}, series = {ACS Nano}, volume = {6}, journal = {ACS Nano}, number = {3}, publisher = {ACS Publications}, address = {Washington, DC}, issn = {1936-086X}, doi = {10.1021/nn300147e}, pages = {2712 -- 2721}, year = {2012}, abstract = {In this article, we report on the heat-transfer resistance at interfaces as a novel, denaturation-based method to detect single-nucleotide polymorphisms in DNA. We observed that a molecular brush of double-stranded DNA grafted onto synthetic diamond surfaces does not notably affect the heat-transfer resistance at the solid-to-liquid interface. In contrast to this, molecular brushes of single-stranded DNA cause, surprisingly, a substantially higher heat-transfer resistance and behave like a thermally insulating layer. This effect can be utilized to identify ds-DNA melting temperatures via the switching from low- to high heat-transfer resistance. The melting temperatures identified with this method for different DNA duplexes (29 base pairs without and with built-in mutations) correlate nicely with data calculated by modeling. The method is fast, label-free (without the need for fluorescent or radioactive markers), allows for repetitive measurements, and can also be extended toward array formats. Reference measurements by confocal fluorescence microscopy and impedance spectroscopy confirm that the switching of heat-transfer resistance upon denaturation is indeed related to the thermal on-chip denaturation of DNA.}, language = {en} } @article{BaeckerRaueSchusseretal.2012, author = {B{\"a}cker, Matthias and Raue, Markus and Schusser, Sebastian and Jeitner, C. and Breuer, L. and Wagner, P. and Poghossian, Arshak and F{\"o}rster, Arnold and Mang, Thomas and Sch{\"o}ning, Michael Josef}, title = {Microfluidic chip with integrated microvalves based on temperature- and pH-responsive hydrogel thin films}, series = {Physica Status Solidi (a)}, volume = {209}, journal = {Physica Status Solidi (a)}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201100763}, pages = {839 -- 845}, year = {2012}, abstract = {Two types of microvalves based on temperature-responsive poly(N-isopropylacrylamide) (PNIPAAm) and pH-responsive poly(sodium acrylate) (PSA) hydrogel films have been developed and tested. The PNIPAAm and PSA hydrogel films were prepared by means of in situ photopolymerization directly inside the fluidic channel of a microfluidic chip fabricated by combining Si and SU-8 technologies. The swelling/shrinking properties and height changes of the PNIPAAm and PSA films inside the fluidic channel were studied at temperatures of deionized water from 14 to 36 °C and different pH values (pH 3-12) of Titrisol buffer, respectively. Additionally, in separate experiments, the lower critical solution temperature (LCST) of the PNIPAAm hydrogel was investigated by means of a differential scanning calorimetry (DSC) and a surface plasmon resonance (SPR) method. Mass-flow measurements have shown the feasibility of the prepared hydrogel films to work as an on-chip integrated temperature- or pH-responsive microvalve capable to switch the flow channel on/off.}, language = {en} } @inproceedings{SchusserVaessenSchoening2012, author = {Schusser, Sebastian and Vaeßen, Christiane and Sch{\"o}ning, Michael Josef}, title = {5. Graduiertentagung der FH Aachen 15. November 2012}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:a96-opus-50425}, pages = {52}, year = {2012}, abstract = {Tagungsband der 5. Graduiertentagung der FH Aachen am 15. November 2012}, language = {de} } @article{SpelthahnKirsanovLeginetal.2012, author = {Spelthahn, Heiko and Kirsanov, Dmitry and Legin, Andrey and Osterrath, Thomas and Schubert, J{\"u}rgen and Zander, Willi and Sch{\"o}ning, Michael Josef}, title = {Development of a thin-film sensor array for analytical monitoring of heavy metals in aqueous solutions}, series = {Physica Status Solidi (a)}, volume = {209}, journal = {Physica Status Solidi (a)}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, isbn = {1862-6319}, doi = {10.1002/pssa.201100733}, pages = {885 -- 891}, year = {2012}, abstract = {In industrial processes there is a variety of heavy metals (e.g., copper, zinc, cadmium, and lead) in use for wires, coatings, paints, alloys, batteries, etc. Since the application of these transition metals for industry is inevitable, it is a vital task to develop proper analytical techniques for their monitoring at low activity levels, especially because most of these elements are acutely toxic for biological organisms. The determination of ions in solution by means of a simple and inexpensive sensor array is, therefore, a promising task. In this work, a sensor array with heavy metal-sensitive chalcogenide glass membranes for the simultaneous detection of the four ions Ag⁺, Cu2⁺, Cd2⁺, and Pb2⁺ in solution is realized. The results of the physical characterization by means of microscopy, profilometry, Rutherford backscattering spectroscopy (RBS), and scanning electron microscopy (SEM) as well as the electrochemical characterization by means of potentiometric measurements are presented. Additionally, the possibility to expand the sensor array by polymeric sensor membranes is discussed.}, language = {en} } @article{SpelthahnSchubertSchoening2012, author = {Spelthahn, Heiko and Schubert, J{\"u}rgen and Sch{\"o}ning, Michael Josef}, title = {D{\"u}nnschichtsensoren f{\"u}r die Schwermetallanalytik}, series = {GIT : Labor-Fachzeitschrift}, volume = {56}, journal = {GIT : Labor-Fachzeitschrift}, number = {4}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0016-3538}, pages = {285 -- 287}, year = {2012}, abstract = {Die Detektion von Schadstoffen repr{\"a}sentiert in der Umweltanalytik eine wichtige Aufgabenstellung. Gerade die Abwasser- bzw. Brauchwasseranalytik sowie die Prozesskontrolle haben einen hohen Stellenwert. Siliziumbasierte D{\"u}nnschichtsensoren bieten eine kosteng{\"u}nstige M{\"o}glichkeit, „online"-Messungen bzw. Vor-Ort-Messungen zeitnah durchzuf{\"u}hren. In dieser Arbeit wird ein potentiometrisches Sensorarray auf der Basis von Chalkogenidgl{\"a}sern zur Detektion von Schwermetallen in w{\"a}ssrigen Medien vorgestellt.}, language = {en} } @article{WernerGroebelKrumbeetal.2012, author = {Werner, Frederik and Groebel, Simone and Krumbe, Christoph and Wagner, Torsten and Selmer, Thorsten and Yoshinobu, Tatsuo and Baumann, Marcus and Sch{\"o}ning, Michael Josef}, title = {Nutrient concentration-sensitive microorganism-based biosensor}, series = {Physica Status Solidi (a)}, volume = {209}, journal = {Physica Status Solidi (a)}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201100801}, pages = {900 -- 904}, year = {2012}, language = {en} }