@inproceedings{KreyerEsch2017, author = {Kreyer, J{\"o}rg and Esch, Thomas}, title = {Simulation Tool for Predictive Control Strategies for an ORCSystem in Heavy Duty Vehicles}, series = {European GT Conference 2017}, booktitle = {European GT Conference 2017}, pages = {16 Seiten}, year = {2017}, abstract = {Scientific questions - How can a non-stationary heat offering in the commercial vehicle be used to reduce fuel consumption? - Which potentials offer route and environmental information among with predicted speed and load trajectories to increase the efficiency of a ORC-System? Methods - Desktop bound holistic simulation model for a heavy duty truck incl. an ORC System - Prediction of massflows, temperatures and mixture quality (AFR) of exhaust gas}, language = {en} } @techreport{EschFunkeRoosen2010, author = {Esch, Thomas and Funke, Harald and Roosen, Petra}, title = {SIoBiA - Safety Implications of Biofuels in Aviation}, publisher = {EASA}, address = {K{\"o}ln}, pages = {279 Seiten}, year = {2010}, abstract = {Biofuels potentially interesting also for aviation purposes are predominantly liquid fuels produced from biomass. The most common biofuels today are biodiesel and bioethanol. Since diesel engines are rather rare in aviation this survey is focusing on ethanol admixed to gasoline products. The Directive 2003/30/EC of the European Parliament and the Council of May 8th 2003 on the promotion of the use of biofuels or other renewable fuels for transport encourage a growing admixture of biogenic fuel components to fossil automotive gasoline. Some aircraft models equipped with spark ignited piston engines are approved for operation with automotive gasoline, frequently called "MOGAS" (motor gasoline). The majority of those approvals is limited to MOGAS compositions that do not contain methanol or ethanol beyond negligible amounts. In the past years (bio-)MTBE or (bio-)ETBE have been widely used as blending component of automotive gasoline whilst the usage of low-molecular alcohols like methanol or ethanol has been avoided due to the handling problems especially with regard to the strong affinity for water. With rising mandatory bio-admixtures the conversion of the basic biogenic ethanol to ETBE, causing a reduction of energetic payoff, becomes more and more unattractive. Therefore the direct ethanol admixture is accordingly favoured. Due to the national enforcements of the directive 2003/30/EC more oxygenates produced from organic materials like bioethanol have started to appear in automotive gasolines already. The current fuel specification EN 228 already allows up to 3 \% volume per volume (v/v) (bio-)methanol or up to 5 \% v/v (bio-)ethanol as fuel components. This is also roughly the amount of biogenic components to comply with the legal requirements to avoid monetary penalties for producers and distributors of fuels. Since automotive fuel is cheaper than the common aviation gasoline (AVGAS), creates less problems with lead deposits in the engine, and in general produces less pollutants it is strongly favoured by pilots. But being designed for a different set of usage scenarios the use of automotive fuel with low molecular alcohols for aircraft operation may have adverse effects in aviation operation. Increasing amounts of ethanol admixtures impose various changes in the gasoline's chemical and physical properties, some of them rather unexpected and not within the range of flight experiences even of long-term pilots.}, language = {en} } @article{Esch2010, author = {Esch, Thomas}, title = {Trends in commercial vehicle powertrains}, series = {ATZautotechnology}, volume = {2010}, journal = {ATZautotechnology}, number = {10}, publisher = {Vieweg \& Sohn}, address = {Wiesbaden}, issn = {2192-886X}, doi = {10.1007/BF03247185}, pages = {26 -- 31}, year = {2010}, abstract = {Low emission zones and truck bans, the rising price of diesel and increases in road tolls: all of these factors are putting serious pressure on the transport industry. Commercial vehicle manufacturers and their suppliers are in the process of identifying new solutions to these challenges as part of their efforts to meet the EEV (enhanced environmentally friendly vehicle) limits, which are currently the most robust European exhaust and emissions standards for trucks and buses.}, language = {en} } @inproceedings{KemperHellenbroichEsch2009, author = {Kemper, Hans and Hellenbroich, Gereon and Esch, Thomas}, title = {Concept of an innovative passenger-car hybrid drive for European driving conditions}, series = {Hybrid vehicles and energy management : 6th symposium ; 18th and 19th February 2009, Stadthalle Braunschweig}, booktitle = {Hybrid vehicles and energy management : 6th symposium ; 18th and 19th February 2009, Stadthalle Braunschweig}, publisher = {Gesamtzentrum f{\"u}r Verkehr (GZVB)}, address = {Braunschweig}, isbn = {978-3-937655-20-8}, pages = {264 -- 287}, year = {2009}, abstract = {The downsizing of spark ignition engines in conjunction with turbocharging is considered to be a promising method for reducing CO₂ emissions. Using this concept, FEV has developed a new, highly efficient drivetrain to demonstrate fuel consumption reduction and drivability in a vehicle based on the Ford Focus ST. The newly designed 1.8L turbocharged gasoline engine incorporates infinitely variable intake and outlet control timing and direct fuel injection utilizing piezo injectors centrally located. In addition, this engine uses a prototype FEV engine control system, with software that was developed and adapted entirely by FEV. The vehicle features a 160 kW engine with a maximum mean effective pressure of 22.4 bar and 34 \% savings in simulated fuel consumption. During the first stage, a new electrohydraulically actuated hybrid transmission with seven forward gears and one reverse gear and a single dry starting clutch will be integrated. The electric motor of the hybrid is directly connected to the gear set of the transmission. Utilizing the special gear set layout, the electric motor can provide boost during a change of gears, so that there is no interruption in traction. Therefore, the transmission system combines the advantages of a double clutch controlled gear change (gear change without an interruption in traction) with the efficient, cost-effective design of an automated manual transmission system. Additionally, the transmission provides a purely electric drive system and the operation of an air-conditioning compressor during the engine stop phases. One other alternative is through the use of CAI (Controlled Auto Ignition), which incorporates a process developed by FEV for controlled compression ignition.}, language = {en} } @inproceedings{FunkeEschRoosen2009, author = {Funke, Harald and Esch, Thomas and Roosen, Peter}, title = {Using motor gasoline for aircrafts - coping with growing bio-fuel-caused risks by understanding cause-effect relationship}, series = {Fuels 2009 : mineral oil based and alternative fuels ; 7th international colloquium ; January 14 - 15, 2009}, booktitle = {Fuels 2009 : mineral oil based and alternative fuels ; 7th international colloquium ; January 14 - 15, 2009}, editor = {Bartz, Wilfried J.}, publisher = {Technische Akademie Esslingen (TAE)}, address = {Ostfildern}, isbn = {978-3-924813-75-8}, pages = {237 -- 244}, year = {2009}, abstract = {The utilisation of vehicle-oriented gasoline in general aviation is very desirable for both ecological and economical reasons, as well as for general considerations of availability. As of today vehicle fuels may be used if the respective engine and cell are certified for such an operation. For older planes a supplementary technical certificate is provided for gasoline mixtures with less than 1 \% v/v ethanol only, though. Larger admixtures of ethanol may lead to sudden engine malfunction and should be considered as considerable security risks. Major problems are caused by the partially ethanol non-withstanding materials, a necessarily changed stochiometric adjustment of the engine for varying ethanol shares and the tendency for phase separation in the presence of absorbed water. The concepts of the flexible fuel vehicles are only partially applicable in the view of air security.}, language = {en} } @inproceedings{AltherrConzenElsenetal.2023, author = {Altherr, Lena and Conzen, Max and Elsen, Ingo and Frauenrath, Tobias and Lyrmann, Andreas}, title = {Sensor retrofitting of existing buildings in an interdisciplinary teaching project at university level}, series = {Tagungsband AALE 2023 : mit Automatisierung gegen den Klimawandel}, booktitle = {Tagungsband AALE 2023 : mit Automatisierung gegen den Klimawandel}, editor = {Reiff-Stephan, J{\"o}rg and J{\"a}kel, Jens and Schwarz, Andr{\´e}}, publisher = {le-tex publishing services GmbH}, address = {Leipzig}, isbn = {978-3-910103-01-6}, doi = {10.33968/2023.04}, pages = {31 -- 40}, year = {2023}, abstract = {Existing residential buildings have an average lifetime of 100 years. Many of these buildings will exist for at least another 50 years. To increase the efficiency of these buildings while keeping costs at reasonable rates, they can be retrofitted with sensors that deliver information to central control units for heating, ventilation and electricity. This retrofitting process should happen with minimal intervention into existing infrastructure and requires new approaches for sensor design and data transmission. At FH Aachen University of Applied Sciences, students of different disciplines work together to learn how to design, build, deploy and operate such sensors. The presented teaching project already created a low power design for a combined CO2, temperature and humidity measurement device that can be easily integrated into most home automation systems}, language = {en} } @inproceedings{DeyElsenFerreinetal.2021, author = {Dey, Thomas and Elsen, Ingo and Ferrein, Alexander and Frauenrath, Tobias and Reke, Michael and Schiffer, Stefan}, title = {CO2 Meter: a do-it-yourself carbon dioxide measuring device for the classroom}, series = {PETRA '21: Proceedings of the 14th Pervasive Technologies Related to Assistive Environments Conference}, booktitle = {PETRA '21: Proceedings of the 14th Pervasive Technologies Related to Assistive Environments Conference}, editor = {Makedon, Fillia}, publisher = {Association for Computing Machinery}, address = {New York}, isbn = {9781450387927}, doi = {10.1145/3453892.3462697}, pages = {292 -- 299}, year = {2021}, abstract = {In this paper we report on CO2 Meter, a do-it-yourself carbon dioxide measuring device for the classroom. Part of the current measures for dealing with the SARS-CoV-2 pandemic is proper ventilation in indoor settings. This is especially important in schools with students coming back to the classroom even with high incidents rates. Static ventilation patterns do not consider the individual situation for a particular class. Influencing factors like the type of activity, the physical structure or the room occupancy are not incorporated. Also, existing devices are rather expensive and often provide only limited information and only locally without any networking. This leaves the potential of analysing the situation across different settings untapped. Carbon dioxide level can be used as an indicator of air quality, in general, and of aerosol load in particular. Since, according to the latest findings, SARS-CoV-2 can be transmitted primarily in the form of aerosols, carbon dioxide may be used as a proxy for the risk of a virus infection. Hence, schools could improve the indoor air quality and potentially reduce the infection risk if they actually had measuring devices available in the classroom. Our device supports schools in ventilation and it allows for collecting data over the Internet to enable a detailed data analysis and model generation. First deployments in schools at different levels were received very positively. A pilot installation with a larger data collection and analysis is underway.}, language = {en} } @inproceedings{ElsenSchmalzbauer2011, author = {Elsen, Ingo and Schmalzbauer, Michael}, title = {Messsystematik zur Steuerung der Produkt- und Prozessqualit{\"a}t in Systemintegrationsprojekten - ein Erfahrungsbericht}, series = {Software Engineering 2011 - Fachtagung des GI-Fachbereichs Softwaretechnik, 21. - 25. Februar 2011 in Karlsruhe}, booktitle = {Software Engineering 2011 - Fachtagung des GI-Fachbereichs Softwaretechnik, 21. - 25. Februar 2011 in Karlsruhe}, editor = {Reussner, Ralf and Grund, Matthias and Andreas, Oberweis and Tichy, Walter}, publisher = {Gesellschaft f{\"u}r Informatik eV}, address = {Bonn}, isbn = {9783885792772}, issn = {1617-5468}, pages = {1 Seite}, year = {2011}, abstract = {Der Erfolg eines Softwarenentwicklungsprojektes insbesondere eines Systemintegrationsprojektes wird mit der Erf{\"u}llung des „Teufelsdreiecks", „In-Time", „In-Budget", „In-Quality" gemessen. Hierzu ist die Kenntnis der Software- und Prozessqualit{\"a}t essenziell, um die Einhaltung der Qualit{\"a}tskriterien festzustellen, aber auch, um eine Vorhersage hinsichtlich Termin- und Budgettreue zu treffen. Zu diesem Zweck wurde in der T-Systems Systems Integration ein System aus verschiedenen Key Performance Indikatoren entworfen und in der Organisation implementiert, das genau das leistet und die Kriterien f{\"u}r CMMI Level 3 erf{\"u}llt.}, language = {de} } @inproceedings{ElsenHawariJohnen2010, author = {Elsen, Ingo and Hawari, Asma and Johnen, Uwe}, title = {Produktkernel in der Systemintegration (Erfahrungsbericht aus der Praxis)}, series = {Vom Projekt zum Produkt - Fachtagung des GI-Fachausschusses Management der Anwendungsentwicklung und -wartung im Fachbereich Wirtschaftsinformatik (WI-MAW), 1. - 3. Dezember 2010 in Aachen}, booktitle = {Vom Projekt zum Produkt - Fachtagung des GI-Fachausschusses Management der Anwendungsentwicklung und -wartung im Fachbereich Wirtschaftsinformatik (WI-MAW), 1. - 3. Dezember 2010 in Aachen}, editor = {Pietsch, Wolfram and Krams, Benedikt}, publisher = {Gesellschaft f{\"u}r Informatik eV}, address = {Bonn}, isbn = {9783885792727}, issn = {1617-5468}, pages = {93 -- 102}, year = {2010}, abstract = {In der Vergangenheit basierten große Systemintegrationsprojekte in der Regel auf Individualentwicklungen f{\"u}r einzelne Kunden. Getrieben durch Kostendruck steigt aber der Bedarf nach standardisierten L{\"o}sungen, die gleichzeitig die individuellen Anforderungen des jeweiligen Umfelds ber{\"u}cksichtigen. T-Systems GEI GmbH wird beiden Anforderungen mit Produktkerneln gerecht. Neben den technischen Aspekten der Kernelentwicklung spielen besonders organisatorische Aspekte eine Rolle, um Kernel effizient und qualitativ hochwertig zu entwickeln, ohne deren Funktionalit{\"a}ten ins Uferlose wachsen zu lassen. Umgesetzt hat T-Systems dieses Konzept f{\"u}r Flughafeninformationssysteme. Damit kann dem wachsenden Bedarf der Flughafenbetreiber nach einer effizienten und kosteng{\"u}nstigen Softwarel{\"o}sung zur Unterst{\"u}tzung Ihrer Gesch{\"a}ftsprozesse entsprochen werden.}, language = {de} } @article{ElsenHartungHornetal.2001, author = {Elsen, Ingo and Hartung, Frank and Horn, Uwe and Kampmann, Markus and Peters, Liliane}, title = {Streaming technology in 3G mobile communication systems}, series = {Computer : innovative technology for computer professionals}, volume = {34}, journal = {Computer : innovative technology for computer professionals}, number = {9 Seiten}, editor = {Voas, Jeffrey}, publisher = {IEEE}, address = {New York}, issn = {0018-9162}, pages = {46 -- 52}, year = {2001}, abstract = {Third-generation mobile communication systems will combine standardized streaming with a range of unique services to provide high-quality Internet content that meets the specific needs of the rapidly growing mobile market.}, language = {en} }