@inproceedings{WuKemper2016, author = {Wu, Ziyi and Kemper, Hans}, title = {The optimal 48 V - battery pack for a specific load profile of a heavy duty vehicle}, series = {8. Internationale Fachtagung Kraftwerk Batterie : 26. - 27. April 2016, M{\"u}nster, Deutschland}, booktitle = {8. Internationale Fachtagung Kraftwerk Batterie : 26. - 27. April 2016, M{\"u}nster, Deutschland}, year = {2016}, language = {en} } @inproceedings{WeissAbanteribaEsch2007, author = {Weiss, Alexander and Abanteriba, Sylvester and Esch, Thomas}, title = {Investigation of Flow Separation Inside a Conical Rocket Nozzle With the Aid of an Annular Cross Flow}, series = {Proceedings of the ASME/JSME 2007 5th Joint Fluids Engineering Conference. Volume 1: Symposia, Parts A and B}, booktitle = {Proceedings of the ASME/JSME 2007 5th Joint Fluids Engineering Conference. Volume 1: Symposia, Parts A and B}, publisher = {American Society of Mechanical Engineers (ASME)}, address = {New York}, isbn = {0-7918-4288-6}, doi = {10.1115/FEDSM2007-37387}, pages = {1861 -- 1871}, year = {2007}, abstract = {Flow separation is a phenomenon that occurs in all kinds of supersonic nozzles sometimes during run-up and shut-down operations. Especially in expansion nozzles of rocket engines with large area ratio, flow separation can trigger strong side loads that can damage the structure of the nozzle. The investigation presented in this paper seeks to establish measures that may be applied to alter the point of flow separation. In order to achieve this, a supersonic nozzle was placed at the exit plane of the conical nozzle. This resulted in the generation of cross flow surrounding the core jet flow from the conical nozzle. Due to the entrainment of the gas stream from the conical nozzle the pressure in its exit plane was found to be lower than that of the ambient. A Cold gas instead of hot combustion gases was used as the working fluid. A mathematical simulation of the concept was validated by experiment. Measurements confirmed the simulation results that due to the introduction of a second nozzle the pressure in the separated region of the conical nozzle was significantly reduced. It was also established that the boundary layer separation inside the conical nozzle was delayed thus allowing an increased degree of overexpansion. The condition established by the pressure measurements was also demonstrated qualitatively using transparent nozzle configurations.}, language = {en} } @article{WeiheErnstRoethetal.2013, author = {Weihe, Stefan and Ernst, Ansgar and R{\"o}th, Thilo and Proksch, Johannes}, title = {Aluminium-Stahl-Verbundguss im Nutzfahrzeugbau}, series = {ATZ - Automobiltechnische Zeitschrift}, volume = {115}, journal = {ATZ - Automobiltechnische Zeitschrift}, number = {4}, publisher = {Springer Fachmedien Wiesbaden}, issn = {2192-8800 (Online)}, pages = {312 -- 316}, year = {2013}, abstract = {In modernen Fahrzeugkarosserien der Großserie kommen zunehmend Materialmischbauweisen zur Anwendung. In Zusammenarbeit der Daimler AG, der Tower Automotive Holding GmbH, der Imperia GmbH sowie der Partnerunternehmen KSM Castings GmbH und Schaufler Tooling GmbH \& Co. KG wird das Leichtbaupotenzial von Aluminiumverbundguss-Stahlblech-Hybriden am Beispiel des vorderen Dachquertr{\"a}gers des Mercedes-Benz Viano/Vito ausf{\"u}hrlich untersucht.}, language = {de} } @article{WeiheErnstRoethetal.2013, author = {Weihe, Stefan and Ernst, Ansgar and R{\"o}th, Thilo and Proksch, Johannes}, title = {Leichtmetall-Stahl-Verbundguss im Nutzfahrzeugbau}, series = {Lightweight Design}, volume = {6}, journal = {Lightweight Design}, number = {2}, publisher = {Springer}, address = {Berlin}, issn = {2192-8738 (Online)}, pages = {38 -- 43}, year = {2013}, abstract = {In modernen Fahrzeugkarosserien der Großserie kommen zunehmend Materialmischbauweisen zur Anwendung. In Zusammenarbeit der Daimler AG, der Tower Automotive Holding GmbH, der Imperia GmbH sowie der Partnerunternehmen KSM Castings GmbH und Schaufler Tooling GmbH \& Co. KG wird das Leichtbaupotenzial von Stahlblech-AluminiumverbundgussHybriden am Beispiel des vorderen Dachquertr{\"a}gers des Mercedes-Benz Viano/Vito ausf{\"u}hrlich untersucht.}, language = {de} } @inproceedings{VeettilRakshitSchopenetal.2022, author = {Veettil, Yadu Krishna Morassery and Rakshit, Shantam and Schopen, Oliver and Kemper, Hans and Esch, Thomas and Shabani, Bahman}, title = {Automated Control System Strategies to Ensure Safety of PEM Fuel Cells Using Kalman Filters}, series = {Proceedings of the 7th International Conference and Exhibition on Sustainable Energy and Advanced Materials (ICE-SEAM 2021), Melaka, Malaysia}, booktitle = {Proceedings of the 7th International Conference and Exhibition on Sustainable Energy and Advanced Materials (ICE-SEAM 2021), Melaka, Malaysia}, editor = {Bin Abdollah, Mohd Fadzli and Amiruddin, Hilmi and Singh, Amrik Singh Phuman and Munir, Fudhail Abdul and Ibrahim, Asriana}, publisher = {Springer Nature}, address = {Singapore}, isbn = {978-981-19-3178-9}, issn = {2195-4356}, doi = {10.1007/978-981-19-3179-6_55}, pages = {296 -- 299}, year = {2022}, abstract = {Having well-defined control strategies for fuel cells, that can efficiently detect errors and take corrective action is critically important for safety in all applications, and especially so in aviation. The algorithms not only ensure operator safety by monitoring the fuel cell and connected components, but also contribute to extending the health of the fuel cell, its durability and safe operation over its lifetime. While sensors are used to provide peripheral data surrounding the fuel cell, the internal states of the fuel cell cannot be directly measured. To overcome this restriction, Kalman Filter has been implemented as an internal state observer. Other safety conditions are evaluated using real-time data from every connected sensor and corrective actions automatically take place to ensure safety. The algorithms discussed in this paper have been validated thorough Model-in-the-Loop (MiL) tests as well as practical validation at a dedicated test bench.}, language = {en} } @article{UlmerBraunChengetal.2023, author = {Ulmer, Jessica and Braun, Sebastian and Cheng, Chi-Tsun and Dowey, Steve and Wollert, J{\"o}rg F.}, title = {A human factors-aware assistance system in manufacturing based on gamification and hardware modularisation}, series = {International Journal of Production Research}, journal = {International Journal of Production Research}, publisher = {Taylor \& Francis}, issn = {0020-7543 (Print)}, doi = {10.1080/00207543.2023.2166140}, year = {2023}, abstract = {Assistance systems have been widely adopted in the manufacturing sector to facilitate various processes and tasks in production environments. However, existing systems are mostly equipped with rigid functional logic and do not provide individual user experiences or adapt to their capabilities. This work integrates human factors in assistance systems by adjusting the hardware and instruction presented to the workers' cognitive and physical demands. A modular system architecture is designed accordingly, which allows a flexible component exchange according to the user and the work task. Gamification, the use of game elements in non-gaming contexts, has been further adopted in this work to provide level-based instructions and personalised feedback. The developed framework is validated by applying it to a manual workstation for industrial assembly routines.}, language = {en} } @article{ThomessenThomaBraun2023, author = {Thomessen, Karolin and Thoma, Andreas and Braun, Carsten}, title = {Bio-inspired altitude changing extension to the 3DVFH* local obstacle avoidance algorithm}, series = {CEAS Aeronautical Journal}, journal = {CEAS Aeronautical Journal}, publisher = {Springer}, address = {Wien}, issn = {1869-5590 (Online)}, doi = {10.1007/s13272-023-00691-w}, pages = {11 Seiten}, year = {2023}, abstract = {Obstacle avoidance is critical for unmanned aerial vehicles (UAVs) operating autonomously. Obstacle avoidance algorithms either rely on global environment data or local sensor data. Local path planners react to unforeseen objects and plan purely on local sensor information. Similarly, animals need to find feasible paths based on local information about their surroundings. Therefore, their behavior is a valuable source of inspiration for path planning. Bumblebees tend to fly vertically over far-away obstacles and horizontally around close ones, implying two zones for different flight strategies depending on the distance to obstacles. This work enhances the local path planner 3DVFH* with this bio-inspired strategy. The algorithm alters the goal-driven function of the 3DVFH* to climb-preferring if obstacles are far away. Prior experiments with bumblebees led to two definitions of flight zone limits depending on the distance to obstacles, leading to two algorithm variants. Both variants reduce the probability of not reaching the goal of a 3DVFH* implementation in Matlab/Simulink. The best variant, 3DVFH*b-b, reduces this probability from 70.7 to 18.6\% in city-like worlds using a strong vertical evasion strategy. Energy consumption is higher, and flight paths are longer compared to the algorithm version with pronounced horizontal evasion tendency. A parameter study analyzes the effect of different weighting factors in the cost function. The best parameter combination shows a failure probability of 6.9\% in city-like worlds and reduces energy consumption by 28\%. Our findings demonstrate the potential of bio-inspired approaches for improving the performance of local path planning algorithms for UAV.}, language = {en} } @article{ThomaThomessenGardietal.2023, author = {Thoma, Andreas and Thomessen, Karolin and Gardi, Alessandro and Fisher, A. and Braun, Carsten}, title = {Prioritising paths: An improved cost function for local path planning for UAV in medical applications}, series = {The Aeronautical Journal}, journal = {The Aeronautical Journal}, number = {First View}, publisher = {Cambridge University Press}, address = {Cambridge}, issn = {0001-9240 (Print)}, doi = {10.1017/aer.2023.68}, pages = {1 -- 18}, year = {2023}, abstract = {Even the shortest flight through unknown, cluttered environments requires reliable local path planning algorithms to avoid unforeseen obstacles. The algorithm must evaluate alternative flight paths and identify the best path if an obstacle blocks its way. Commonly, weighted sums are used here. This work shows that weighted Chebyshev distances and factorial achievement scalarising functions are suitable alternatives to weighted sums if combined with the 3DVFH* local path planning algorithm. Both methods considerably reduce the failure probability of simulated flights in various environments. The standard 3DVFH* uses a weighted sum and has a failure probability of 50\% in the test environments. A factorial achievement scalarising function, which minimises the worst combination of two out of four objective functions, reaches a failure probability of 26\%; A weighted Chebyshev distance, which optimises the worst objective, has a failure probability of 30\%. These results show promise for further enhancements and to support broader applicability.}, language = {en} } @inproceedings{ThomaStiemerBraunetal.2023, author = {Thoma, Andreas and Stiemer, Luc and Braun, Carsten and Fisher, Alex and Gardi, Alessandro G.}, title = {Potential of hybrid neural network local path planner for small UAV in urban environments}, series = {AIAA SCITECH 2023 Forum}, booktitle = {AIAA SCITECH 2023 Forum}, publisher = {AIAA}, address = {Reston, Va.}, doi = {10.2514/6.2023-2359}, pages = {13 Seiten}, year = {2023}, abstract = {This work proposes a hybrid algorithm combining an Artificial Neural Network (ANN) with a conventional local path planner to navigate UAVs efficiently in various unknown urban environments. The proposed method of a Hybrid Artificial Neural Network Avoidance System is called HANNAS. The ANN analyses a video stream and classifies the current environment. This information about the current Environment is used to set several control parameters of a conventional local path planner, the 3DVFH*. The local path planner then plans the path toward a specific goal point based on distance data from a depth camera. We trained and tested a state-of-the-art image segmentation algorithm, PP-LiteSeg. The proposed HANNAS method reaches a failure probability of 17\%, which is less than half the failure probability of the baseline and around half the failure probability of an improved, bio-inspired version of the 3DVFH*. The proposed HANNAS method does not show any disadvantages regarding flight time or flight distance.}, language = {en} } @techreport{ThomaLaarmannMerkensetal.2020, author = {Thoma, Andreas and Laarmann, Lukas and Merkens, Torsten and Franzke, Till and M{\"o}hren, Felix and Buttermann, Lilly and van der Weem, Dirk and Fischer, Maximilian and Misch, Philipp and B{\"o}hme, Mirijam and R{\"o}th, Thilo and Hebel, Christoph and Ritz, Thomas and Franke, Marina and Braun, Carsten}, title = {Entwicklung eines intermodalen Mobilit{\"a}tskonzeptes f{\"u}r die Pilotregion NRW/Rhein-Maas Euregio und Schaffung voller Kundenakzeptanz durch Transfer von Standards aus dem PKW-Bereich auf ein Flugtaxi : Schlussbericht : Projektakronym: SkyCab (Kategorie B) : Laufzeit in Monaten: 6 : Hauptthema: Kategorie B: Innovative Ideen mit Bezug zu UAS/Flugtaxis}, publisher = {FH Aachen}, address = {Aachen}, pages = {97 Seiten}, year = {2020}, language = {de} } @article{ThomaGardiFisheretal.2024, author = {Thoma, Andreas and Gardi, Alessandro and Fisher, Alex and Braun, Carsten}, title = {Improving local path planning for UAV flight in challenging environments by refining cost function weights}, series = {CEAS Aeronautical Journal}, journal = {CEAS Aeronautical Journal}, publisher = {Springer}, address = {Wien}, issn = {1869-5590 (eISSN)}, doi = {10.1007/s13272-024-00741-x}, pages = {12 Seiten}, year = {2024}, abstract = {Unmanned Aerial Vehicles (UAV) constantly gain in versatility. However, more reliable path planning algorithms are required until full autonomous UAV operation is possible. This work investigates the algorithm 3DVFH* and analyses its dependency on its cost function weights in 2400 environments. The analysis shows that the 3DVFH* can find a suitable path in every environment. However, a particular type of environment requires a specific choice of cost function weights. For minimal failure, probability interdependencies between the weights of the cost function have to be considered. This dependency reduces the number of control parameters and simplifies the usage of the 3DVFH*. Weights for costs associated with vertical evasion (pitch cost) and vicinity to obstacles (obstacle cost) have the highest influence on the failure probability of the local path planner. Environments with mainly very tall buildings (like large American city centres) require a preference for horizontal avoidance manoeuvres (achieved with high pitch cost weights). In contrast, environments with medium-to-low buildings (like European city centres) benefit from vertical avoidance manoeuvres (achieved with low pitch cost weights). The cost of the vicinity to obstacles also plays an essential role and must be chosen adequately for the environment. Choosing these two weights ideal is sufficient to reduce the failure probability below 10\%.}, language = {en} } @inproceedings{ThomaFisherBraun2020, author = {Thoma, Andreas and Fisher, Alex and Braun, Carsten}, title = {Improving the px4 avoid algorithm by bio-inspired flight strategies}, series = {DLRK2020 - „Luft- und Raumfahrt - Verantwortung in allen Dimensionen"}, booktitle = {DLRK2020 - „Luft- und Raumfahrt - Verantwortung in allen Dimensionen"}, doi = {10.25967/530183}, pages = {10 Seiten}, year = {2020}, language = {en} } @inproceedings{ThomaFisherBertrandetal.2020, author = {Thoma, Andreas and Fisher, Alex and Bertrand, Olivier and Braun, Carsten}, title = {Evaluation of possible flight strategies for close object evasion from bumblebee experiments}, series = {Living Machines 2020: Biomimetic and Biohybrid Systems}, booktitle = {Living Machines 2020: Biomimetic and Biohybrid Systems}, editor = {Vouloutsi, Vasiliki and Mura, Anna and Tauber, Falk and Speck, Thomas and Prescott, Tony J. and Verschure, Paul F. M. J.}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-64312-6}, doi = {10.1007/978-3-030-64313-3_34}, pages = {354 -- 365}, year = {2020}, language = {en} } @inproceedings{TamaldinMansorMatYaminetal.2022, author = {Tamaldin, Noreffendy and Mansor, Muhd Rizuan and Mat Yamin, Ahmad Kamal and Bin Abdollah, Mohd Fadzli and Esch, Thomas and Tonoli, Andrea and Reisinger, Karl Heinz and Sprenger, Hanna and Razuli, Hisham}, title = {Development of UTeM United Future Fuel Design Training Center Under Erasmus+ United Program}, series = {Proceedings of the 7th International Conference and Exhibition on Sustainable Energy and Advanced Materials (ICE-SEAM 2021), Melaka, Malaysia}, booktitle = {Proceedings of the 7th International Conference and Exhibition on Sustainable Energy and Advanced Materials (ICE-SEAM 2021), Melaka, Malaysia}, editor = {Bin Abdollah, Mohd Fadzli and Amiruddin, Hilmi and Singh, Amrik Singh Phuman and Munir, Fudhail Abdul and Ibrahim, Asriana}, publisher = {Springer Nature}, address = {Singapore}, isbn = {978-981-19-3178-9}, issn = {2195-4356}, doi = {10.1007/978-981-19-3179-6_50}, pages = {274 -- 278}, year = {2022}, abstract = {The industrial revolution IR4.0 era have driven many states of the art technologies to be introduced especially in the automotive industry. The rapid development of automotive industries in Europe have created wide industry gap between European Union (EU) and developing countries such as in South-East Asia (SEA). Indulging this situation, FH Joanneum, Austria together with European partners from FH Aachen, Germany and Politecnico Di Torino, Italy is taking initiative to close the gap utilizing the Erasmus+ United grant from EU. A consortium was founded to engage with automotive technology transfer using the European ramework to Malaysian, Indonesian and Thailand Higher Education Institutions (HEI) as well as automotive industries. This could be achieved by establishing Engineering Knowledge Transfer Unit (EKTU) in respective SEA institutions guided by the industry partners in their respective countries. This EKTU could offer updated, innovative, and high-quality training courses to increase graduate's employability in higher education institutions and strengthen relations between HEI and the wider economic and social environment by addressing Universityindustry cooperation which is the regional priority for Asia. It is expected that, the Capacity Building Initiative would improve the quality of higher education and enhancing its relevance for the labor market and society in the SEA partners. The outcome of this project would greatly benefit the partners in strong and complementary partnership targeting the automotive industry and enhanced larger scale international cooperation between the European and SEA partners. It would also prepare the SEA HEI in sustainable partnership with Automotive industry in the region as a mean of income generation in the future.}, language = {en} } @inproceedings{TamaldinEschTonolietal.2020, author = {Tamaldin, Noreffendy and Esch, Thomas and Tonoli, Andrea and Reisinger, Karl Heinz and Sprenger, Hanna and Razuli, Hisham}, title = {ERASMUS+ United CBHE Automotive International Collaboration from European to South East Asia}, series = {Proceedings of the 2nd African International Conference on Industrial Engineering and Operations Management}, booktitle = {Proceedings of the 2nd African International Conference on Industrial Engineering and Operations Management}, publisher = {IEOM Society International}, address = {Southfield}, isbn = {978-1-7923-6123-4}, issn = {2169-8767}, pages = {2970 -- 2972}, year = {2020}, abstract = {The industrial revolution especially in the IR4.0 era have driven many states of the art technologies to be introduced. The automotive industry as well as many other key industries have also been greatly influenced. The rapid development of automotive industries in Europe have created wide industry gap between European Union (EU) and developing countries such as in South East Asia (SEA). Indulging this situation, FH JOANNEUM, Austria together with European partners from FH Aachen, Germany and Politecnico di Torino, Italy are taking initiative to close down the gap utilizing the Erasmus+ United Capacity Building in Higher Education grant from EU. A consortium was founded to engage with automotive technology transfer using the European framework to Malaysian, Indonesian and Thailand Higher Education Institutions (HEI) as well as automotive industries in respective countries. This could be achieved by establishing Engineering Knowledge Transfer Unit (EKTU) in respective SEA institutions guided by the industry partners in their respective countries. This EKTU could offer updated, innovative and high-quality training courses to increase graduate's employability in higher education institutions and strengthen relations between HEI and the wider economic and social environment by addressing University-industry cooperation which is the regional priority for Asia. It is expected that, the Capacity Building Initiative would improve the quality of higher education and enhancing its relevance for the labor market and society in the SEA partners. The outcome of this project would greatly benefit the partners in strong and complementary partnership targeting the automotive industry and enhanced larger scale international cooperation between the European and SEA partners. It would also prepare the SEA HEI in sustainable partnership with Automotive industry in the region as a mean of income generation in the future.}, language = {en} } @article{StiemerThomaBraun2023, author = {Stiemer, Luc Nicolas and Thoma, Andreas and Braun, Carsten}, title = {MBT3D: Deep learning based multi-object tracker for bumblebee 3D flight path estimation}, series = {PLoS ONE}, volume = {18}, journal = {PLoS ONE}, number = {9}, publisher = {PLOS}, address = {San Fancisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0291415}, pages = {e0291415}, year = {2023}, abstract = {This work presents the Multi-Bees-Tracker (MBT3D) algorithm, a Python framework implementing a deep association tracker for Tracking-By-Detection, to address the challenging task of tracking flight paths of bumblebees in a social group. While tracking algorithms for bumblebees exist, they often come with intensive restrictions, such as the need for sufficient lighting, high contrast between the animal and background, absence of occlusion, significant user input, etc. Tracking flight paths of bumblebees in a social group is challenging. They suddenly adjust movements and change their appearance during different wing beat states while exhibiting significant similarities in their individual appearance. The MBT3D tracker, developed in this research, is an adaptation of an existing ant tracking algorithm for bumblebee tracking. It incorporates an offline trained appearance descriptor along with a Kalman Filter for appearance and motion matching. Different detector architectures for upstream detections (You Only Look Once (YOLOv5), Faster Region Proposal Convolutional Neural Network (Faster R-CNN), and RetinaNet) are investigated in a comparative study to optimize performance. The detection models were trained on a dataset containing 11359 labeled bumblebee images. YOLOv5 reaches an Average Precision of AP = 53, 8\%, Faster R-CNN achieves AP = 45, 3\% and RetinaNet AP = 38, 4\% on the bumblebee validation dataset, which consists of 1323 labeled bumblebee images. The tracker's appearance model is trained on 144 samples. The tracker (with Faster R-CNN detections) reaches a Multiple Object Tracking Accuracy MOTA = 93, 5\% and a Multiple Object Tracking Precision MOTP = 75, 6\% on a validation dataset containing 2000 images, competing with state-of-the-art computer vision methods. The framework allows reliable tracking of different bumblebees in the same video stream with rarely occurring identity switches (IDS). MBT3D has much lower IDS than other commonly used algorithms, with one of the lowest false positive rates, competing with state-of-the-art animal tracking algorithms. The developed framework reconstructs the 3-dimensional (3D) flight paths of the bumblebees by triangulation. It also handles and compares two alternative stereo camera pairs if desired.}, language = {en} } @inproceedings{StarkRiepingEsch2023, author = {Stark, Ralf and Rieping, Carla and Esch, Thomas}, title = {The impact of guide tubes on flow separation in rocket nozzles}, series = {Aerospace Europe Conference 2023 - 10th EUCASS - 9th CEAS}, booktitle = {Aerospace Europe Conference 2023 - 10th EUCASS - 9th CEAS}, pages = {8 Seiten}, year = {2023}, abstract = {Rocket engine test facilities and launch pads are typically equipped with a guide tube. Its purpose is to ensure the controlled and safe routing of the hot exhaust gases. In addition, the guide tube induces a suction that effects the nozzle flow, namely the flow separation during transient start-up and shut-down of the engine. A cold flow subscale nozzle in combination with a set of guide tubes was studied experimentally to determine the main influencing parameters.}, language = {en} } @article{Schueckhaus2020, author = {Sch{\"u}ckhaus, Ulrich}, title = {Die SkyCab-Erfinder im WFMG-Interview}, series = {Business in MG}, journal = {Business in MG}, number = {1}, pages = {6 -- 7}, year = {2020}, language = {de} } @inproceedings{SchulzeMuehleisenFeyerl2018, author = {Schulze, Sven and M{\"u}hleisen, M. and Feyerl, G{\"u}nter}, title = {Adaptive energy management strategy for a heavy-duty truck with a P2-hybrid topology}, series = {18. Internationales Stuttgarter Symposium. Proceedings}, booktitle = {18. Internationales Stuttgarter Symposium. Proceedings}, publisher = {Springer Vieweg}, address = {Wiesbaden}, doi = {10.1007/978-3-658-21194-3}, pages = {75 -- 89}, year = {2018}, language = {en} } @article{SchulzeFeyerlPischinger2023, author = {Schulze, Sven and Feyerl, G{\"u}nter and Pischinger, Stefan}, title = {Advanced ECMS for hybrid electric heavy-duty trucks with predictive battery discharge and adaptive operating strategy under real driving conditions}, series = {Energies}, volume = {16}, journal = {Energies}, number = {13}, publisher = {MDPI}, address = {Basel}, issn = {1996-1073}, doi = {10.3390/en16135171}, pages = {29 Seiten, Art. Nr.: 5171}, year = {2023}, abstract = {To fulfil the CO2 emission reduction targets of the European Union (EU), heavy-duty (HD) trucks need to operate 15\% more efficiently by 2025 and 30\% by 2030. Their electrification is necessary as conventional HD trucks are already optimized for the long-haul application. The resulting hybrid electric vehicle (HEV) truck gains most of the fuel saving potential by the recuperation of potential energy and its consecutive utilization. The key to utilizing the full potential of HEV-HD trucks is to maximize the amount of recuperated energy and ensure its intelligent usage while keeping the operating point of the internal combustion engine as efficient as possible. To achieve this goal, an intelligent energy management strategy (EMS) based on ECMS is developed for a parallel HEV-HD truck which uses predictive discharge of the battery and adaptive operating strategy regarding the height profile and the vehicle mass. The presented EMS can reproduce the global optimal operating strategy over long phases and lead to a fuel saving potential of up to 2\% compared with a heuristic strategy. Furthermore, the fuel saving potential is correlated with the investigated boundary conditions to deepen the understanding of the impact of intelligent EMS for HEV-HD trucks.}, language = {en} } @inproceedings{SchopenShabaniEschetal.2022, author = {Schopen, Oliver and Shabani, Bahman and Esch, Thomas and Kemper, Hans and Shah, Neel}, title = {Quantitative evaluation of health management designs for fuel cell systems in transport vehicles}, series = {2nd UNITED-SAIG International Conference Proceedings}, booktitle = {2nd UNITED-SAIG International Conference Proceedings}, editor = {Rahim, S.A. and As'arry, A. and Zuhri, M.Y.M. and Harmin, M.Y. and Rezali, K.A.M. and Hairuddin, A.A.}, pages = {1 -- 3}, year = {2022}, abstract = {Focusing on transport vehicles, mainly with regard to aviation applications, this paper presents compilation and subsequent quantitative evaluation of methods aimed at building an optimum integrated health management solution for fuel cell systems. The methods are divided into two different main types and compiled in a related scheme. Furthermore, different methods are analysed and evaluated based on parameters specific to the aviation context of this study. Finally, the most suitable method for use in fuel cell health management systems is identified and its performance and suitability is quantified.}, language = {en} } @article{SchopenNarayanBeckmannetal.2024, author = {Schopen, Oliver and Narayan, Sriram and Beckmann, Marvin and Najmi, Aezid-Ul-Hassan and Esch, Thomas and Shabani, Bahman}, title = {An EIS approach to quantify the effects of inlet air relative humidity on the performance of proton exchange membrane fuel cells: a pathway to developing a novel fault diagnostic method}, series = {International Journal of Hydrogen Energy}, volume = {58}, journal = {International Journal of Hydrogen Energy}, number = {8}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {0360-3199 (print)}, issn = {1879-3487 (online)}, doi = {10.1016/j.ijhydene.2024.01.218}, pages = {1302 -- 1315}, year = {2024}, abstract = {In this work, the effect of low air relative humidity on the operation of a polymer electrolyte membrane fuel cell is investigated. An innovative method through performing in situ electrochemical impedance spectroscopy is utilised to quantify the effect of inlet air relative humidity at the cathode side on internal ionic resistances and output voltage of the fuel cell. In addition, algorithms are developed to analyse the electrochemical characteristics of the fuel cell. For the specific fuel cell stack used in this study, the membrane resistance drops by over 39 \% and the cathode side charge transfer resistance decreases by 23 \% after increasing the humidity from 30 \% to 85 \%, while the results of static operation also show an increase of ∼2.2 \% in the voltage output after increasing the relative humidity from 30 \% to 85 \%. In dynamic operation, visible drying effects occur at < 50 \% relative humidity, whereby the increase of the air side stoichiometry increases the drying effects. Furthermore, other parameters, such as hydrogen humidification, internal stack structure, and operating parameters like stoichiometry, pressure, and temperature affect the overall water balance. Therefore, the optimal humidification range must be determined by considering all these parameters to maximise the fuel cell performance and durability. The results of this study are used to develop a health management system to ensure sufficient humidification by continuously monitoring the fuel cell polarisation data and electrochemical impedance spectroscopy indicators.}, language = {en} } @inproceedings{SchopenKemperEsch2021, author = {Schopen, Oliver and Kemper, Hans and Esch, Thomas}, title = {Development of a comparison methodology and evaluation matrix for electrically driven compressors in ICE and FC}, series = {Proceedings of the 1st UNITED - Southeast Asia Automotive Interest Group (SAIG) International Conference}, booktitle = {Proceedings of the 1st UNITED - Southeast Asia Automotive Interest Group (SAIG) International Conference}, publisher = {FH Joanneum}, address = {Graz}, isbn = {978-3-902103-94-9}, pages = {45 -- 46}, year = {2021}, abstract = {In addition to electromobility and alternative drive systems, a focus is set on electrically driven compressors (EDC), with a high potential for increasing the efficiency of internal combustion engines (ICE) and fuel cells [01]. The primary objective is to increase the ICE torque, provided independently of the ICE speed by compressing the intake air and consequently the ICE filling level supported by the compressor. For operation independent from the ICE speed, the EDC compressor is decoupled from the turbine by using an electric compressor motor (CM) instead of the turbine. ICE performances can be increased by the use of EDC where individual compressor parameters are adapted to the respective application area [02] [03]. This task contains great challenges, increased by demands with regard to pollutant reduction while maintaining constant performance and reduced fuel consumption. The FH-Aachen is equipped with an EDC test bench which enables EDC-investigations in various configurations and operating modes. Characteristic properties of different compressors can be determined, which build the basis for a comparison methodology. Subject of this project is the development of a comparison methodology for EDC with an associated evaluation method and a defined overall evaluation method. For the application of this comparison methodology, corresponding series of measurements are carried out on the EDC test bench using an appropriate test device.}, language = {en} } @misc{SchmitzSchebitzEsch1997, author = {Schmitz, G{\"u}nter and Schebitz, Michael and Esch, Thomas}, title = {Aus der Ruhelage selbstanziehender elektromagnetischer Aktuator}, year = {1997}, abstract = {Elektromagnetischer Aktuator zur Bet{\"a}tigung eines Stellgliedes (2), mit wenigstens einem Elektromagneten (4) und einem mit dem Stellglied (2) verbundenen Anker (3), der gegen die Kraft einer R{\"u}ckstellfeder (6) aus seiner Ruhelage in Richtung auf den Elektromagneten (4) bewegbar ist, mit einer R{\"u}ckstellfeder (6), die eine nicht lineare, bezogen auf die Ruhelage des Ankers (3) progressiv ansteigende Kennlinie aufweist.}, language = {de} } @article{SaretzkiBergmannDahmannetal.2021, author = {Saretzki, Charlotte and Bergmann, Ole and Dahmann, Peter and Janser, Frank and Keimer, Jona and Machado, Patricia and Morrison, Audry and Page, Henry and Pluta, Emil and St{\"u}bing, Felix and K{\"u}pper, Thomas}, title = {Are small airplanes safe with regards to COVID-19 transmission?}, series = {Journal of Travel Medicine}, volume = {28}, journal = {Journal of Travel Medicine}, number = {7}, publisher = {Oxford University Press}, address = {Oxford}, issn = {1708-8305}, doi = {10.1093/jtm/taab105}, year = {2021}, language = {en} } @article{SanchezCespedesLeasureTejedorGaravitoetal.2023, author = {Sanchez-Cespedes, Lina Maria and Leasure, Douglas Ryan and Tejedor-Garavito, Natalia and Amaya Cruz, Glenn Harry and Garcia Velez, Gustavo Adolfo and Mendoza Beltr{\´a}n, Andryu Enrique and Mar{\´i}n-Salazar, Yenny Andrea and Esch, Thomas and Tatem, Andrew J. and Ospina Boh{\´o}rquez, Mariana Francisca}, title = {Social cartography and satellite-derived building coverage for post-census population estimates in difficult-to-access regions of Colombia}, series = {Population studies : a Journal of Demography}, volume = {78}, journal = {Population studies : a Journal of Demography}, number = {1}, publisher = {Taylor \& Francis}, address = {London}, issn = {1477-4747}, doi = {10.1080/00324728.2023.2190151}, pages = {3 -- 20}, year = {2023}, abstract = {Effective government services rely on accurate population numbers to allocate resources. In Colombia and globally, census enumeration is challenging in remote regions and where armed conflict is occurring. During census preparations, the Colombian National Administrative Department of Statistics conducted social cartography workshops, where community representatives estimated numbers of dwellings and people throughout their regions. We repurposed this information, combining it with remotely sensed buildings data and other geospatial data. To estimate building counts and population sizes, we developed hierarchical Bayesian models, trained using nearby full-coverage census enumerations and assessed using 10-fold cross-validation. We compared models to assess the relative contributions of community knowledge, remotely sensed buildings, and their combination to model fit. The Community model was unbiased but imprecise; the Satellite model was more precise but biased; and the Combination model was best for overall accuracy. Results reaffirmed the power of remotely sensed buildings data for population estimation and highlighted the value of incorporating local knowledge.}, language = {en} } @misc{SalberPischingerEschetal.1998, author = {Salber, Wolfgang and Pischinger, Martin and Esch, Thomas and Hagen, J{\"u}rgen}, title = {Kaltstartverfahren f{\"u}r eine drosselfreie Mehrzylinder-Kolbenbrennkraftmaschine}, year = {1998}, abstract = {Die Erfindung betrifft ein Kaltstartverfahren f{\"u}r eine Mehrzylinder-Kolbenbrennkraftmaschine mit Anlasser und einer Motorsteuerung zur Ansteuerung von Kraftstoffeinspritzeinrichtungen, Z{\"u}ndung und voll variabel elektromagnetisch bet{\"a}tigbaren Gaswechselventilen an den einzelnen Zylindern, bei dem die Kurbelwelle {\"u}ber den Anlasser gedreht wird und zum Start f{\"u}r wenigstens einen Zylinder die dazugeh{\"o}rigen Gaswechselventile, die Kraftstoffeinspritzeinrichtung und die Z{\"u}ndung in einem vorgegebenen Taktzyklus angesteuert werden und zwar in den ersten Arbeitszyklen mit "Sp{\"a}tem Einlaß {\"O}ffnen".}, language = {de} } @article{RoethPielenWolffetal.2018, author = {R{\"o}th, Thilo and Pielen, Michael and Wolff, Klaus and L{\"u}diger, Thomas}, title = {Urbane Fahrzeugkonzepte f{\"u}r die Shared Mobility}, series = {Automobiltechnische Zeitschrift - ATZ}, volume = {120}, journal = {Automobiltechnische Zeitschrift - ATZ}, number = {1}, publisher = {Springer Vieweg}, address = {Wiesbaden}, issn = {0001-2785}, doi = {10.1007/s35148-017-0176-8}, pages = {18 -- 23}, year = {2018}, abstract = {Urbane Mobilit{\"a}tskonzepte der Zukunft erfordern neue Unternehmensformen, idealerweise aus Old Economy und New Economy, sowie eine enge Anbindung an die gesellschaftsrelevante Zukunftsforschung. F{\"u}r neue Fahrzeugkonzepte des Carsharing bedeutet dies, dass alle kostenverursachenden Faktoren erfasst und analysiert werden m{\"u}ssen. Die FH Aachen, share2drive und FEV geben einen Ausblick auf die zuk{\"u}nftige Fahrzeugklasse der Personal Public Vehicles als „Rolling Device".}, language = {de} } @incollection{RoethPielen2018, author = {R{\"o}th, Thilo and Pielen, Michael}, title = {Personal Public Vehicle - ein urbanes Fahrzeugkonzept f{\"u}r die „Shared Mobility" der Zukunft}, series = {Karosseriebautage Hamburg 2018, 16. ATZ-Fachtagung}, booktitle = {Karosseriebautage Hamburg 2018, 16. ATZ-Fachtagung}, publisher = {Springer Vieweg}, address = {Wiesbaden}, doi = {10.1007/978-3-658-22038-9_13}, pages = {189 -- 199}, year = {2018}, abstract = {Die urbane Mobilit{\"a}t ist im Wandel und insbesondere neue innovative Gesch{\"a}ftsmodelle werden einen wesentlichen Teil zur L{\"o}sung von k{\"u}nftigen Mobilit{\"a}tsbed{\"u}rfnissen beitragen. Die sogenannte „Shared Mobility" gilt aktuell neben der Elektrifizierung des Antriebes und autonomem Fahrzeugtechnologien als einer der wichtigsten Trendthemen in der Automobilindustrie. Neue Mobilit{\"a}tsdienstleistungen verlangen dabei verst{\"a}rkt auch neue Fahrzeugkonzepte.}, language = {de} } @incollection{RoethDeutskensKreiskoetheretal.2018, author = {R{\"o}th, Thilo and Deutskens, Christoph and Kreisk{\"o}ther, Kai and Heimes, Heiner Hans and Schittny, Bastian and Ivanescu, Sebastian and Kleine B{\"u}ning, Max and Reinders, Christian and Wessels, Saskia and Haunreiter, Andreas and Reisgen, Uwe and Thiele, Regina and Hameyer, Kay and Doncker, Rik W. de and Sauer, Uwe and Hoek, Hauke van and H{\"u}bner, Mareike and Hennen, Martin and Stolze, Thilo and Vetter, Andreas and Hagedorn, J{\"u}rgen and M{\"u}ller, Dirk and Rewitz, Kai and Wesseling, Mark and Flieger, Bj{\"o}rn}, title = {Entwicklung von elektrofahrzeugspezifischen Systemen}, series = {Elektromobilit{\"a}t}, booktitle = {Elektromobilit{\"a}t}, publisher = {Springer Vieweg}, address = {Berlin, Heidelberg}, isbn = {978-3-662-53137-2}, doi = {10.1007/978-3-662-53137-2_6}, pages = {279 -- 386}, year = {2018}, abstract = {Die Batterie ist eine der absolut zentralen Komponenten des Elektrofahrzeugs. Die serielle Entwicklung und Produktion dieser Batterien und die Verbesserung der Leistungen wird entscheidend f{\"u}r den Erfolg der Elektromobilit{\"a}t sein. Die Batterie ist jedoch nicht das einzige elektrofahrzeugspezifische System, das neu entwickelt, umkonzipiert oder verbessert werden muss. So sind ebenso die Entwicklung der neuen Fahrzeugstruktur sowie des elektrifizierten Antriebsstranges Teil dieses Kapitels. Weiterhin wird ein Blick auf das bedeutende Thema des Thermomanagements geworfen.}, language = {de} } @misc{PischingerEschDuesmann2006, author = {Pischinger, Martin and Esch, Thomas and Duesmann, Klaus}, title = {Elektromagnetischer Aktuator mit gelenkig abgest{\"u}tzter R{\"u}ckstellfeder}, year = {2006}, abstract = {Die Erfindung betrifft einen elektromagnetischen Aktuator zur Bet{\"a}tigung eines Stellgliedes (7) mit wenigstens einem gesteuert bestrombaren Elektromagneten (1, 2) und einem mit dem Stellglied (7) in Wirkverbindung stehenden Anker (5), der bei Bestromung des Elektromagneten (1, 2) gegen die Kraft wenigstens einer an einem Geh{\"a}use (12) abgest{\"u}tzten R{\"u}ckstellfeder (10) an der Polfl{\"a}che (3, 4) des Elektromagneten (1, 2) zur Anlage kommt, und daß zumindest der Anker (5) {\"u}ber eine sph{\"a}rische Gelenkanordnung (11) auf der R{\"u}ckstellfeder (10) abgest{\"u}tzt ist.}, language = {de} } @article{PetersonRoethUibel2017, author = {Peterson, Leif Arne and R{\"o}th, Thilo and Uibel, Thomas}, title = {Einsatz von Holzwerkstoffen in Fahrzeugstrukturen}, series = {Bauen mit Holz}, journal = {Bauen mit Holz}, number = {3}, publisher = {Bruderverlag}, address = {K{\"o}ln}, issn = {0005-6545}, pages = {32 -- 38}, year = {2017}, language = {de} } @inproceedings{PetersonRoethUibel2017, author = {Peterson, Leif Arne and R{\"o}th, Thilo and Uibel, Thomas}, title = {Holzwerkstoffe in Karosseriestrukturen}, series = {Tagungsband Aachener Holzbautagung 2017}, booktitle = {Tagungsband Aachener Holzbautagung 2017}, editor = {Uibel, Thomas and Peterson, Leif Arne and Baumann, Marcus}, issn = {2197-4489}, pages = {34 -- 45}, year = {2017}, language = {de} } @inproceedings{PaslighFunkeRoethetal.2010, author = {Pasligh, N. and Funke, D. and R{\"o}th, Thilo and Krack, R.}, title = {Leichtbau Quertrager als Stahlblech-Aluminiumdruckguss-Hybrid - Von der numerischen Berechnung bis zum realen Prototypen}, series = {VDI BERICHTE}, booktitle = {VDI BERICHTE}, publisher = {VDI Verlag}, address = {D{\"u}sseldorf}, isbn = {978-3-18-092107-5}, pages = {688 Seiten}, year = {2010}, language = {de} } @inproceedings{NowackRoethBuehrigPolaczeketal.2008, author = {Nowack, N. and R{\"o}th, Thilo and B{\"u}hrig-Polaczek, Andreas and Klaus, G.}, title = {Advanced Sheet Metal Components Reinforced by Light Metal Cast Structures}, series = {Aluminium alloys : their physical and mechanical properties ; [proceedings of the 11th International Conference on Aluminium Alloys, 22 - 26 Sept. 2008, Aachen, Germany ; ICAA 11]}, booktitle = {Aluminium alloys : their physical and mechanical properties ; [proceedings of the 11th International Conference on Aluminium Alloys, 22 - 26 Sept. 2008, Aachen, Germany ; ICAA 11]}, number = {2}, editor = {Hirsch, J{\"u}rgen}, isbn = {978-3-527-32367-8}, pages = {2374 -- 2381}, year = {2008}, language = {en} } @inproceedings{NeuJanserKhatibietal.2016, author = {Neu, Eugen and Janser, Frank and Khatibi, Akbar A. and Orifici, Adrian C.}, title = {In-flight vibration-based structural health monitoring of aircraft wings}, series = {30th Congress of the internatonal council of the aeronautical sciences : 25.-30. September 2016, Daejeon, Korea}, booktitle = {30th Congress of the internatonal council of the aeronautical sciences : 25.-30. September 2016, Daejeon, Korea}, pages = {10 Seiten}, year = {2016}, abstract = {This work presents a methodology for automated damage-sensitive feature extraction and anomaly detection under multivariate operational variability for in-flight assessment of wings. The method uses a passive excitation approach, i. e. without the need for artificial actuation. The modal system properties (natural frequencies and damping ratios) are used as damage-sensitive features. Special emphasis is placed on the use of Fiber Bragg Grating (FBG) sensing technology and the consideration of Operational and Environmental Variability (OEV). Measurements from a wind tunnel investigation with a composite cantilever equipped with FBG and piezoelectric sensors are used to successfully detect an impact damage. In addition, the feasibility of damage localisation and severity estimation is evaluated based on the coupling found between damageand OEV-induced feature changes.}, language = {en} } @article{NeuJanserKhatibietal.2017, author = {Neu, Eugen and Janser, Frank and Khatibi, Akbar A. and Orifici, Adrian C.}, title = {Fully Automated Operational Modal Analysis using multi-stage clustering}, series = {Mechanical Systems and Signal Processing}, volume = {Vol. 84, Part A}, journal = {Mechanical Systems and Signal Processing}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0888-3270}, doi = {10.1016/j.ymssp.2016.07.031}, pages = {308 -- 323}, year = {2017}, language = {en} } @article{NeuJanserKhatibietal.2016, author = {Neu, Eugen and Janser, Frank and Khatibi, Akbar A. and Orifici, Adrian C.}, title = {Automated modal parameter-based anomaly detection under varying wind excitation}, series = {Structural Health Monitoring}, volume = {15}, journal = {Structural Health Monitoring}, number = {6}, publisher = {Sage}, address = {London}, issn = {1475-9217}, doi = {10.1177/1475921716665803}, pages = {1 -- 20}, year = {2016}, abstract = {Wind-induced operational variability is one of the major challenges for structural health monitoring of slender engineering structures like aircraft wings or wind turbine blades. Damage sensitive features often show an even bigger sensitivity to operational variability. In this study a composite cantilever was subjected to multiple mass configurations, velocities and angles of attack in a controlled wind tunnel environment. A small-scale impact damage was introduced to the specimen and the structural response measurements were repeated. The proposed damage detection methodology is based on automated operational modal analysis. A novel baseline preparation procedure is described that reduces the amount of user interaction to the provision of a single consistency threshold. The procedure starts with an indeterminate number of operational modal analysis identifications from a large number of datasets and returns a complete baseline matrix of natural frequencies and damping ratios that is suitable for subsequent anomaly detection. Mahalanobis distance-based anomaly detection is then applied to successfully detect the damage under varying severities of operational variability and with various degrees of knowledge about the present operational conditions. The damage detection capabilities of the proposed methodology were found to be excellent under varying velocities and angles of attack. Damage detection was less successful under joint mass and wind variability but could be significantly improved through the provision of the currently encountered operational conditions.}, language = {en} } @article{MoehrenBergmannJanseretal.2024, author = {M{\"o}hren, Felix and Bergmann, Ole and Janser, Frank and Braun, Carsten}, title = {Assessment of structural mechanical effects related to torsional deformations of propellers}, series = {CEAS Aeronautical Journal}, journal = {CEAS Aeronautical Journal}, publisher = {Springer}, address = {Wien}, issn = {1869-5590 (eISSN)}, doi = {10.1007/s13272-024-00737-7}, pages = {22 Seiten}, year = {2024}, abstract = {Lifting propellers are of increasing interest for Advanced Air Mobility. All propellers and rotors are initially twisted beams, showing significant extension-twist coupling and centrifugal twisting. Torsional deformations severely impact aerodynamic performance. This paper presents a novel approach to assess different reasons for torsional deformations. A reduced-order model runs large parameter sweeps with algebraic formulations and numerical solution procedures. Generic beams represent three different propeller types for General Aviation, Commercial Aviation, and Advanced Air Mobility. Simulations include solid and hollow cross-sections made of aluminum, steel, and carbon fiber-reinforced polymer. The investigation shows that centrifugal twisting moments depend on both the elastic and initial twist. The determination of the centrifugal twisting moment solely based on the initial twist suffers from errors exceeding 5\% in some cases. The nonlinear parts of the torsional rigidity do not significantly impact the overall torsional rigidity for the investigated propeller types. The extension-twist coupling related to the initial and elastic twist in combination with tension forces significantly impacts the net cross-sectional torsional loads. While the increase in torsional stiffness due to initial twist contributes to the overall stiffness for General and Commercial Aviation propellers, its contribution to the lift propeller's stiffness is limited. The paper closes with the presentation of approximations for each effect identified as significant. Numerical evaluations are necessary to determine each effect for inhomogeneous cross-sections made of anisotropic material.}, language = {en} } @misc{MayntzKeimerTegtmeyeretal.2021, author = {Mayntz, Joscha and Keimer, Jona and Tegtmeyer, Philipp and Dahmann, Peter and Hille, Sebastian and Stumpf, Eike and Fisher, Alex and Dorrington, Graham}, title = {Aerodynamic Investigation on Efficient Inflight Transition of a Propeller from Propulsion to Regeneration Mode}, series = {AIAA SCITECH 2022 Forum}, journal = {AIAA SCITECH 2022 Forum}, publisher = {AIAA}, address = {Reston, Va.}, doi = {10.2514/6.2022-0546}, year = {2021}, abstract = {This paper discusses a new way of inflight power regeneration for electric or hybrid-electric driven general aviation aircraft with one powertrain for both configurations. Three different approaches for the shift from propulsion to regeneration mode are analyzed. Numerical cal-culation and wind tunnel results are compared and show the highest regeneration potential for the "Windmill" approach, where the propeller blades are flipped, and rotation is reversed. A combination of all regeneration approaches for a realistic flight mission is discussed.}, language = {en} } @misc{MachadoDahmannKeimeretal.2020, author = {Machado, Patricia Almeida and Dahmann, Peter and Keimer, Jona and Saretzki, Charlotte and St{\"u}bing, Felix and K{\"u}pper, Thomas}, title = {Stress profile and individual workload monitoring in general aviation pilots - an experiment's setting}, series = {23. Annual Meeting of the German Society of Travel Medicine, Coburg, 18.-19.9.2020}, journal = {23. Annual Meeting of the German Society of Travel Medicine, Coburg, 18.-19.9.2020}, doi = {10.55225/hppa.156}, year = {2020}, language = {en} } @inproceedings{LaoBuehrigPolaczekRoeth2011, author = {Lao, B. and B{\"u}hrig-Polaczek, Andreas and R{\"o}th, Thilo}, title = {Funktionsintegrierte Leichtbaustrukturen in gussintensiver Metall-Hybridbauweise}, series = {Verbundwerkstoffe und Werkstoffverbunde: Tagungsband zum 18. Symposium ; 30.03.2011 bis 01.04.2011, Chemnitz}, booktitle = {Verbundwerkstoffe und Werkstoffverbunde: Tagungsband zum 18. Symposium ; 30.03.2011 bis 01.04.2011, Chemnitz}, editor = {Wielage, Bernhard}, publisher = {Eigenverlag}, address = {Chemnitz}, isbn = {978-3-00-033801-4}, pages = {413 -- 421}, year = {2011}, language = {de} } @article{LaarmannThomaMischetal.2023, author = {Laarmann, Lukas and Thoma, Andreas and Misch, Philipp and R{\"o}th, Thilo and Braun, Carsten and Watkins, Simon and Fard, Mohammad}, title = {Automotive safety approach for future eVTOL vehicles}, series = {CEAS Aeronautical Journal}, journal = {CEAS Aeronautical Journal}, publisher = {Springer Nature}, issn = {1869-5590 (Online)}, doi = {10.1007/s13272-023-00655-0}, pages = {11 Seiten}, year = {2023}, abstract = {The eVTOL industry is a rapidly growing mass market expected to start in 2024. eVTOL compete, caused by their predicted missions, with ground-based transportation modes, including mainly passenger cars. Therefore, the automotive and classical aircraft design process is reviewed and compared to highlight advantages for eVTOL development. A special focus is on ergonomic comfort and safety. The need for further investigation of eVTOL's crashworthiness is outlined by, first, specifying the relevance of passive safety via accident statistics and customer perception analysis; second, comparing the current state of regulation and certification; and third, discussing the advantages of integral safety and applying the automotive safety approach for eVTOL development. Integral safety links active and passive safety, while the automotive safety approach means implementing standardized mandatory full-vehicle crash tests for future eVTOL. Subsequently, possible crash impact conditions are analyzed, and three full-vehicle crash load cases are presented.}, language = {en} } @article{KreyerMuellerEsch2020, author = {Kreyer, J{\"o}rg and M{\"u}ller, Marvin and Esch, Thomas}, title = {A Calculation Methodology for Predicting Exhaust Mass Flows and Exhaust Temperature Profiles for Heavy-Duty Vehicles}, series = {SAE International Journal of Commercial Vehicles}, volume = {13}, journal = {SAE International Journal of Commercial Vehicles}, number = {2}, publisher = {SAE International}, address = {Warrendale, Pa.}, issn = {1946-3928}, doi = {10.4271/02-13-02-0009}, pages = {129 -- 143}, year = {2020}, abstract = {The predictive control of commercial vehicle energy management systems, such as vehicle thermal management or waste heat recovery (WHR) systems, are discussed on the basis of information sources from the field of environment recognition and in combination with the determination of the vehicle system condition. In this article, a mathematical method for predicting the exhaust gas mass flow and the exhaust gas temperature is presented based on driving data of a heavy-duty vehicle. The prediction refers to the conditions of the exhaust gas at the inlet of the exhaust gas recirculation (EGR) cooler and at the outlet of the exhaust gas aftertreatment system (EAT). The heavy-duty vehicle was operated on the motorway to investigate the characteristic operational profile. In addition to the use of road gradient profile data, an evaluation of the continuously recorded distance signal, which represents the distance between the test vehicle and the road user ahead, is included in the prediction model. Using a Fourier analysis, the trajectory of the vehicle speed is determined for a defined prediction horizon. To verify the method, a holistic simulation model consisting of several hierarchically structured submodels has been developed. A map-based submodel of a combustion engine is used to determine the EGR and EAT exhaust gas mass flows and exhaust gas temperature profiles. All simulation results are validated on the basis of the recorded vehicle and environmental data. Deviations from the predicted values are analyzed and discussed.}, language = {en} } @inproceedings{KreyerMuellerEsch2020, author = {Kreyer, J{\"o}rg and M{\"u}ller, Marvin and Esch, Thomas}, title = {A Map-Based Model for the Determination of Fuel Consumption for Internal Combustion Engines as a Function of Flight Altitude}, publisher = {DGLR}, address = {Bonn}, doi = {10.25967/490162}, pages = {13 Seiten}, year = {2020}, abstract = {In addition to very high safety and reliability requirements, the design of internal combustion engines (ICE) in aviation focuses on economic efficiency. The objective must be to design the aircraft powertrain optimized for a specific flight mission with respect to fuel consumption and specific engine power. Against this background, expert tools provide valuable decision-making assistance for the customer. In this paper, a mathematical calculation model for the fuel consumption of aircraft ICE is presented. This model enables the derivation of fuel consumption maps for different engine configurations. Depending on the flight conditions and based on these maps, the current and the integrated fuel consumption for freely definable flight emissions is calculated. For that purpose, an interpolation method is used, that has been optimized for accuracy and calculation time. The mission boundary conditions flight altitude and power requirement of the ICE form the basis for this calculation. The mathematical fuel consumption model is embedded in a parent program. This parent program presents the simulated fuel consumption by means of an example flight mission for a representative airplane. The focus of the work is therefore on reproducing exact consumption data for flight operations. By use of the empirical approaches according to Gagg-Farrar [1] the power and fuel consumption as a function of the flight altitude are determined. To substantiate this approaches, a 1-D ICE model based on the multi-physical simulation tool GT-Suite® has been created. This 1-D engine model offers the possibility to analyze the filling and gas change processes, the internal combustion as well as heat and friction losses for an ICE under altitude environmental conditions. Performance measurements on a dynamometer at sea level for a naturally aspirated ICE with a displacement of 1211 ccm used in an aviation aircraft has been done to validate the 1-D ICE model. To check the plausibility of the empirical approaches with respect to the fuel consumption and performance adjustment for the flight altitude an analysis of the ICE efficiency chain of the 1-D engine model is done. In addition, a comparison of literature and manufacturer data with the simulation results is presented.}, language = {en} } @inproceedings{KreyerEsch2017, author = {Kreyer, J{\"o}rg and Esch, Thomas}, title = {Simulation Tool for Predictive Control Strategies for an ORCSystem in Heavy Duty Vehicles}, series = {European GT Conference 2017}, booktitle = {European GT Conference 2017}, pages = {16 Seiten}, year = {2017}, abstract = {Scientific questions - How can a non-stationary heat offering in the commercial vehicle be used to reduce fuel consumption? - Which potentials offer route and environmental information among with predicted speed and load trajectories to increase the efficiency of a ORC-System? Methods - Desktop bound holistic simulation model for a heavy duty truck incl. an ORC System - Prediction of massflows, temperatures and mixture quality (AFR) of exhaust gas}, language = {en} } @article{KhayyamJamaliBabHadiasharetal.2020, author = {Khayyam, Hamid and Jamali, Ali and Bab-Hadiashar, Alireza and Esch, Thomas and Ramakrishna, Seeram and Jalili, Mahdi and Naebe, Minoo}, title = {A Novel Hybrid Machine Learning Algorithm for Limited and Big Data Modeling with Application in Industry 4.0}, series = {IEEE Access}, volume = {8}, journal = {IEEE Access}, number = {Art. 9108222}, publisher = {IEEE}, address = {New York, NY}, issn = {2169-3536}, doi = {10.1109/ACCESS.2020.2999898}, pages = {111381 -- 111393}, year = {2020}, abstract = {To meet the challenges of manufacturing smart products, the manufacturing plants have been radically changed to become smart factories underpinned by industry 4.0 technologies. The transformation is assisted by employment of machine learning techniques that can deal with modeling both big or limited data. This manuscript reviews these concepts and present a case study that demonstrates the use of a novel intelligent hybrid algorithms for Industry 4.0 applications with limited data. In particular, an intelligent algorithm is proposed for robust data modeling of nonlinear systems based on input-output data. In our approach, a novel hybrid data-driven combining the Group-Method of Data-Handling and Singular-Value Decomposition is adapted to find an offline deterministic model combined with Pareto multi-objective optimization to overcome the overfitting issue. An Unscented-Kalman-Filter is also incorporated to update the coefficient of the deterministic model and increase its robustness against data uncertainties. The effectiveness of the proposed method is examined on a set of real industrial measurements.}, language = {en} } @article{KhayyamJamaliBabHadiasharetal.2020, author = {Khayyam, Hamid and Jamali, Ali and Bab-Hadiashar, Alireza and Esch, Thomas and Ramakrishna, Seeram and Jalil, Mahdi and Naebe, Minoo}, title = {A Novel Hybrid Machine Learning Algorithm for Limited and Big Data Modelling with Application in Industry 4.0}, series = {IEEE Access}, journal = {IEEE Access}, publisher = {IEEE}, address = {New York, NY}, isbn = {2169-3536}, doi = {10.1109/ACCESS.2020.2999898}, pages = {1 -- 12}, year = {2020}, abstract = {To meet the challenges of manufacturing smart products, the manufacturing plants have been radically changed to become smart factories underpinned by industry 4.0 technologies. The transformation is assisted by employment of machine learning techniques that can deal with modeling both big or limited data. This manuscript reviews these concepts and present a case study that demonstrates the use of a novel intelligent hybrid algorithms for Industry 4.0 applications with limited data. In particular, an intelligent algorithm is proposed for robust data modeling of nonlinear systems based on input-output data. In our approach, a novel hybrid data-driven combining the Group-Method of Data-Handling and Singular-Value Decomposition is adapted to find an offline deterministic model combined with Pareto multi-objective optimization to overcome the overfitting issue. An Unscented-Kalman-Filter is also incorporated to update the coefficient of the deterministic model and increase its robustness against data uncertainties. The effectiveness of the proposed method is examined on a set of real industrial measurements.}, language = {en} } @inproceedings{KemperHellenbroichEsch2009, author = {Kemper, Hans and Hellenbroich, Gereon and Esch, Thomas}, title = {Concept of an innovative passenger-car hybrid drive for European driving conditions}, series = {Hybrid vehicles and energy management : 6th symposium ; 18th and 19th February 2009, Stadthalle Braunschweig}, booktitle = {Hybrid vehicles and energy management : 6th symposium ; 18th and 19th February 2009, Stadthalle Braunschweig}, publisher = {Gesamtzentrum f{\"u}r Verkehr (GZVB)}, address = {Braunschweig}, isbn = {978-3-937655-20-8}, pages = {264 -- 287}, year = {2009}, abstract = {The downsizing of spark ignition engines in conjunction with turbocharging is considered to be a promising method for reducing CO₂ emissions. Using this concept, FEV has developed a new, highly efficient drivetrain to demonstrate fuel consumption reduction and drivability in a vehicle based on the Ford Focus ST. The newly designed 1.8L turbocharged gasoline engine incorporates infinitely variable intake and outlet control timing and direct fuel injection utilizing piezo injectors centrally located. In addition, this engine uses a prototype FEV engine control system, with software that was developed and adapted entirely by FEV. The vehicle features a 160 kW engine with a maximum mean effective pressure of 22.4 bar and 34 \% savings in simulated fuel consumption. During the first stage, a new electrohydraulically actuated hybrid transmission with seven forward gears and one reverse gear and a single dry starting clutch will be integrated. The electric motor of the hybrid is directly connected to the gear set of the transmission. Utilizing the special gear set layout, the electric motor can provide boost during a change of gears, so that there is no interruption in traction. Therefore, the transmission system combines the advantages of a double clutch controlled gear change (gear change without an interruption in traction) with the efficient, cost-effective design of an automated manual transmission system. Additionally, the transmission provides a purely electric drive system and the operation of an air-conditioning compressor during the engine stop phases. One other alternative is through the use of CAI (Controlled Auto Ignition), which incorporates a process developed by FEV for controlled compression ignition.}, language = {en} } @misc{KeimerGirbigMayntzetal.2022, author = {Keimer, Jona and Girbig, Leo and Mayntz, Joscha and Tegtmeyer, Philipp and Wendland, Frederik and Dahman, Peter and Fisher, Alex and Dorrington, Graham}, title = {Flight mission optimization for eco-efficiency in consideration of electric regeneration and atmospheric conditions}, series = {AIAA AVIATION 2022 Forum}, journal = {AIAA AVIATION 2022 Forum}, publisher = {AIAA}, address = {Reston, Va.}, doi = {10.2514/6.2022-4118}, year = {2022}, abstract = {The development and operation of hybrid or purely electrically powered aircraft in regional air mobility is a significant challenge for the entire aviation sector. This technology is expected to lead to substantial advances in flight performance, energy efficiency, reliability, safety, noise reduction, and exhaust emissions. Nevertheless, any consumed energy results in heat or carbon dioxide emissions and limited electric energy storage capabilities suppress commercial use. Therefore, the significant challenges to achieving eco-efficient aviation are increased aircraft efficiency, the development of new energy storage technologies, and the optimization of flight operations. Two major approaches for higher eco-efficiency are identified: The first one, is to take horizontal and vertical atmospheric motion phenomena into account. Where, in particular, atmospheric waves hold exciting potential. The second one is the use of the regeneration ability of electric aircraft. The fusion of both strategies is expected to improve efficiency. The objective is to reduce energy consumption during flight while not neglecting commercial usability and convenient flight characteristics. Therefore, an optimized control problem based on a general aviation class aircraft has to be developed and validated by flight experiments. The formulated approach enables a development of detailed knowledge of the potential and limitations of optimizing flight missions, considering the capability of regeneration and atmospheric influences to increase efficiency and range.}, language = {en} }