@article{WernerWagnerMiyamotoetal.2011, author = {Werner, Frederik and Wagner, Torsten and Miyamoto, Ko-ichiro and Yoshinobu, Tatsuo and Sch{\"o}ning, Michael Josef}, title = {High speed and high resolution chemical imaging based on a new type of OLED-LAPS set-up}, series = {Procedia Engineering. 25 (2011)}, journal = {Procedia Engineering. 25 (2011)}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {1877-7058}, pages = {346 -- 349}, year = {2011}, language = {en} } @article{MiyamotoKanekoMatsuoetal.2012, author = {Miyamoto, Ko-ichiro and Kaneko, Kazumi and Matsuo, Akira and Wagner, Torsten and Kanoh, Shin{\´i}chiro and Sch{\"o}ning, Michael Josef and Yoshinobu, Tatsuo}, title = {Miniaturized chemical imaging sensor system using an OLED display panel}, series = {Sensors and Actuators B: Chemical}, volume = {170}, journal = {Sensors and Actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2011.02.029}, pages = {82 -- 87}, year = {2012}, abstract = {The chemical imaging sensor is a semiconductor-based chemical sensor that can visualize the two-dimensional distribution of specific ions or molecules in the solution. In this study, we developed a miniaturized chemical imaging sensor system with an OLED display panel as a light source that scans the sensor plate. In the proposed configuration, the display panel is placed directly below the sensor plate and illuminates the back surface. The measured area defined by illumination can be arbitrarily customized to fit the size and the shape of the sample to be measured. The waveform of the generated photocurrent, the current-voltage characteristics and the pH sensitivity were investigated and pH imaging with this miniaturized system was demonstrated.}, language = {en} } @article{KirchnerOberlaenderFriedrichetal.2012, author = {Kirchner, Patrick and Oberl{\"a}nder, Jan and Friedrich, Peter and Berger, J{\"o}rg and Rysstad, Gunnar and Sch{\"o}ning, Michael Josef and Keusgen, Michael}, title = {Realisation of a calorimetric gas sensor on polyimide foil for applications in aseptic food industry}, series = {Sensors and Actuators B: Chemical}, volume = {170}, journal = {Sensors and Actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2011.01.032}, pages = {60 -- 66}, year = {2012}, abstract = {A calorimetric gas sensor is presented for the monitoring of vapour-phase H2O2 at elevated temperature during sterilisation processes in aseptic food industry. The sensor was built up on a flexible polyimide foil (thickness: 25 μm) that has been chosen due to its thermal stability and low thermal conductivity. The sensor set-up consists of two temperature-sensitive platinum thin-film resistances passivated by a layer of SU-8 photo resist and catalytically activated by manganese(IV) oxide. Instead of an active heating structure, the calorimetric sensor utilises the elevated temperature of the evaporated H2O2 aerosol. In an experimental test rig, the sensor has shown a sensitivity of 4.78 °C/(\%, v/v) in a H2O2 concentration range of 0\%, v/v to 8\%, v/v. Furthermore, the sensor possesses the same, unchanged sensor signal even at varied medium temperatures between 210 °C and 270 °C of the gas stream. At flow rates of the gas stream from 8 m3/h to 12 m3/h, the sensor has shown only a slightly reduced sensitivity at a low flow rate of 8 m3/h. The sensor characterisation demonstrates the suitability of the calorimetric gas sensor for monitoring the efficiency of industrial sterilisation processes.}, language = {en} } @article{IkenKirsanovLeginetal.2012, author = {Iken, Heiko and Kirsanov, D. and Legin, A. and Sch{\"o}ning, Michael Josef}, title = {Novel Thin-Film Polymeric Materials for the Detection of Heavy Metals}, series = {Procedia Engineering}, journal = {Procedia Engineering}, number = {47}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2012.09.148}, pages = {322 -- 325}, year = {2012}, abstract = {A variety of transition metals, e.g., copper, zinc, cadmium, lead, etc. are widely used in industry as components for wires, coatings, alloys, batteries, paints and so on. The inevitable presence of transition metals in industrial processes implies the ambition of developing a proper analytical technique for their adequate monitoring. Most of these elements, especially lead and cadmium, are acutely toxic for biological organisms. Quantitative determination of these metals at low activity levels in different environmental and industrial samples is therefore a vital task. A promising approach to achieve an at-side or on-line monitoring on a miniaturized and cost efficient way is the combination of a common potentiometric sensor array with heavy metal-sensitive thin-film materials, like chalcogenide glasses and polymeric materials, respectively.}, language = {en} } @article{MiyamotoIchimuraWagneretal.2012, author = {Miyamoto, K. and Ichimura, H. and Wagner, Torsten and Yoshinobu, T. and Sch{\"o}ning, Michael Josef}, title = {Chemical Imaging of ion Diffusion in a Microfluidic Channel}, series = {Procedia Engineering}, journal = {Procedia Engineering}, number = {47}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2012.09.289}, pages = {886 -- 889}, year = {2012}, abstract = {The chemical imaging sensor is a chemical sensor which is capable of visualizing the spatial distribution of chemical species in sample solution. In this study, a novel measurement system based on the chemical imaging sensor was developed to observe the inside of a Y-shaped microfluidic channel while injecting two sample solutions from two branches. From the collected chemical images, it was clearly observed that the injected solutions formed laminar flows in the microfluidic channel. In addition, ion diffusion across the laminar flows was observed. This label-free method can acquire quantitative data of ion distribution and diffusion in microfluidic devices, which can be used to determine the diffusion coefficients, and therefore, the molecular weights of chemical species in the sample solution.}, language = {en} } @article{WagnerShigiaharaMiyamotoetal.2012, author = {Wagner, Torsten and Shigiahara, N. and Miyamoto, K. and Suzurikawa, J. and Finger, F. and Sch{\"o}ning, Michael Josef and Yoshinobu, T.}, title = {Light-addressable Potentiometric Sensors and Light-addressable Electrodes as a Combined Sensor-and-manipulator Microsystem with High Flexibility}, series = {Procedia Engineering}, journal = {Procedia Engineering}, number = {47}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2012.09.290}, pages = {890 -- 893}, year = {2012}, abstract = {This work describes the novel combination of the light-addressable electrode (LAE) and the light-addressable potentiometric sensor (LAPS) into a microsystem set-up. Both the LAE as well as the LAPS shares the principle of addressing the active spot by means of a light beam. This enables both systems to manipulate resp. to detect an analyte with a high spatial resolution. Hence, combining both principles into a single set-up enables the active stimulation e.g., by means of electrolysis and a simultaneous observation e.g., the response of an entrapped biological cell by detection of extracellular pH changes. The work will describe the principles of both technologies and the necessary steps to integrate them into a single set-up. Furthermore, examples of application and operation of such systems will be presented.}, language = {en} } @article{BohrnStuetzFleischeretal.2013, author = {Bohrn, Ulrich and St{\"u}tz, Evamaria and Fleischer, Maximilian and Sch{\"o}ning, Michael Josef and Wagner, Patrick}, title = {Using a cell-based gas biosensor for investigation of adverse effects of acetone vapors in vitro}, series = {Biosensors and Bioelectronics. 40 (2013), H. 1}, journal = {Biosensors and Bioelectronics. 40 (2013), H. 1}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {0956-5663}, pages = {393 -- 400}, year = {2013}, language = {en} } @article{HerzogPietrzykShahetal.2010, author = {Herzog, Hans and Pietrzyk, Uwe and Shah, N. Jon and Ziemons, Karl}, title = {The current state, challenges and perspectives of MR-PET}, series = {Neuroimage}, volume = {49}, journal = {Neuroimage}, number = {3}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1053-8119}, doi = {10.1016/j.neuroimage.2009.10.036}, pages = {2072 -- 2082}, year = {2010}, abstract = {Following the success of PET/CT during the last decade and the recent increasing proliferation of SPECT/CT, another hybrid imaging instrument has been gaining more and more interest: MR-PET. First combined, simultaneous PET and MR studies carried out in small animals demonstrated the feasibility of the new approach. Concurrently, some prototypes of an MR-PET scanner for simultaneous human brain studies have been built, their performance is being tested and preliminary applications have already been shown. Through this pioneering work, it has become clear that advances in the detector design are necessary for further optimization. Recently, the different issues related to the present state and future prospects of MR-PET were presented and discussed during an international 2-day workshop at the Forschungszentrum J{\"u}lich, Germany, held after, and in conjunction with, the 2008 IEEE Nuclear Science Symposium and Medical Imaging Conference in Dresden, Germany on October 27-28, 2008. The topics ranged from small animal MR-PET imaging to human MR-BrainPET imaging, new detector developments, challenges/opportunities for ultra-high field MR-PET imaging and considerations of possible future research and clinical applications. This report presents a critical summary of the contributions made to the workshop.}, language = {en} } @article{MiyamotoIchimuraWagneretal.2013, author = {Miyamoto, Ko-ichiro and Ichimura, Hiroki and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Yoshinobu, Tatsuo}, title = {Chemical imaging of the concentration profile of ion diffusion in a microfluidic channel}, series = {Sensors and actuators. B: Chemical}, volume = {189}, journal = {Sensors and actuators. B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-3077 (E-Journal); 0925-4005 (Print)}, doi = {10.1016/j.snb.2013.04.057}, pages = {240 -- 245}, year = {2013}, abstract = {The chemical imaging sensor is a device to visualize the spatial distribution of chemical species based on the principle of LAPS (light-addressable potentiometric sensor), which is a field-effect chemical sensor based on semiconductor. In this study, the chemical imaging sensor has been applied to investigate the ion profile of laminar flows in a microfluidic channel. The chemical images (pH maps) were collected in a Y-shaped microfluidic channel while injecting HCl and NaCl solutions into two branches. From the chemical images, it was clearly observed that the injected solutions formed laminar flows in the channel. In addition, ion diffusion across the laminar flows was observed, and the diffusion coefficient could be derived by fitting the pH profiles to the Fick's equation.}, language = {en} } @article{BohrnMuchaWerneretal.2013, author = {Bohrn, Ulrich and Mucha, Andreas and Werner, Frederik and Trattner, Barbara and B{\"a}cker, Matthias and Krumbe, Christoph and Schienle, Meinrad and St{\"u}tz, Evamaria and Schmitt-Landsiedel, Doris and Fleischer, Maximilian and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {A critical comparison of cell-based sensor systems for the detection of Cr (VI) in aquatic environment}, series = {Sensors and actuators. B: Chemical}, volume = {Vol. 182}, journal = {Sensors and actuators. B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-3077 (E-Journal); 0925-4005 (Print)}, pages = {58 -- 65}, year = {2013}, language = {en} }