@article{BlockMayWetzeletal.2023, author = {Block, Franziska and May, Alexander and Wetzel, Katharina and Adels, Klaudia and Elbers, Gereon and Schulze, Margit and Monakhova, Yulia}, title = {What is the best spectroscopic method for simultaneous analysis of organic acids and (poly)saccharides in biological matrices: Example of Aloe vera extracts?}, series = {Talanta Open}, volume = {7}, journal = {Talanta Open}, number = {Art. No. 100220}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2666-8319}, doi = {10.1016/j.talo.2023.100220}, pages = {1 -- 9}, year = {2023}, abstract = {Several species of (poly)saccharides and organic acids can be found often simultaneously in various biological matrices, e.g., fruits, plant materials, and biological fluids. The analysis of such matrices sometimes represents a challenging task. Using Aloe vera (A. vera) plant materials as an example, the performance of several spectro-scopic methods (80 MHz benchtop NMR, NIR, ATR-FTIR and UV-vis) for the simultaneous analysis of quality parameters of this plant material was compared. The determined parameters include (poly)saccharides such as aloverose, fructose and glucose as well as organic acids (malic, lactic, citric, isocitric, acetic, fumaric, benzoic and sorbic acids). 500 MHz NMR and high-performance liquid chromatography (HPLC) were used as the reference methods. UV-vis data can be used only for identification of added preservatives (benzoic and sorbic acids) and drying agent (maltodextrin) and semiquantitative analysis of malic acid. NIR and MIR spectroscopies combined with multivariate regression can deliver more informative overview of A. vera extracts being able to additionally quantify glucose, aloverose, citric, isocitric, malic, lactic acids and fructose. Low-field NMR measurements can be used for the quantification of aloverose, glucose, malic, lactic, acetic, and benzoic acids. The benchtop NMR method was successfully validated in terms of robustness, stability, precision, reproducibility and limit of detection (LOD) and quantification (LOQ), respectively. All spectroscopic techniques are useful for the screening of (poly)saccharides and organic acids in plant extracts and should be applied according to its availability as well as information and confidence required for the specific analytical goal. Benchtop NMR spectroscopy seems to be the most feasible solution for quality control of A. vera products.}, language = {en} } @article{BurgerLindnerRumpfetal.2022, author = {Burger, Ren{\´e} and Lindner, Simon and Rumpf, Jessica and Do, Xuan Tung and Diehl, Bernd W.K. and Rehahn, Matthias and Monakhova, Yulia and Schulze, Margit}, title = {Benchtop versus high field NMR: Comparable performance found for the molecular weight determination of lignin}, series = {Journal of Pharmaceutical and Biomedical Analysis}, volume = {212}, journal = {Journal of Pharmaceutical and Biomedical Analysis}, number = {Article number: 114649}, publisher = {Elsevier}, address = {New York, NY}, isbn = {0731-7085}, doi = {10.1016/j.jpba.2022.114649}, year = {2022}, abstract = {Lignin is a promising renewable biopolymer being investigated worldwide as an environmentally benign substitute of fossil-based aromatic compounds, e.g. for the use as an excipient with antioxidant and antimicrobial properties in drug delivery or even as active compound. For its successful implementation into process streams, a quick, easy, and reliable method is needed for its molecular weight determination. Here we present a method using 1H spectra of benchtop as well as conventional NMR systems in combination with multivariate data analysis, to determine lignin's molecular weight (Mw and Mn) and polydispersity index (PDI). A set of 36 organosolv lignin samples (from Miscanthus x giganteus, Paulownia tomentosa and Silphium perfoliatum) was used for the calibration and cross validation, and 17 samples were used as external validation set. Validation errors between 5.6\% and 12.9\% were achieved for all parameters on all NMR devices (43, 60, 500 and 600 MHz). Surprisingly, no significant difference in the performance of the benchtop and high-field devices was found. This facilitates the application of this method for determining lignin's molecular weight in an industrial environment because of the low maintenance expenditure, small footprint, ruggedness, and low cost of permanent magnet benchtop NMR systems.}, language = {en} }