@article{SrivastavaChaharSharmaetal.2017, author = {Srivastava, A. and Chahar, V. and Sharma, V. and Sun, Y. and Bol, R. and Knolle, F. and Schnug, E. and Hoyler, Friedrich and Naskar, N. and Lahiri, S. and Patnaik, R.}, title = {Study of uranium toxicity using low-background gamma-ray spectrometry}, series = {Journal of Radioanalytical and Nuclear Chemistry}, journal = {Journal of Radioanalytical and Nuclear Chemistry}, number = {Online first}, publisher = {Springer}, address = {Berlin}, issn = {1588-2780}, doi = {10.1007/s10967-017-5466-9}, pages = {1 -- 7}, year = {2017}, language = {en} } @incollection{MufflerTippkoetterUlber2010, author = {Muffler, Kai and Tippk{\"o}tter, Nils and Ulber, Roland}, title = {Chemical feedstocks and fine chemicals from other substrates}, series = {Handbook of hydrocarbon and lipid microbiology. Volume 4: Consequences of microbial interactions with hydrocarbons, oils and lipids. - (Springer reference)}, booktitle = {Handbook of hydrocarbon and lipid microbiology. Volume 4: Consequences of microbial interactions with hydrocarbons, oils and lipids. - (Springer reference)}, editor = {Timmis, Kenneth N.}, publisher = {Springer}, address = {Berlin [u.a.]}, isbn = {978-3-540-77588-1}, doi = {10.1007\%2F978-3-540-77587-4_214}, pages = {2891 -- 2902}, year = {2010}, language = {en} } @article{TippkoetterStueckmannKrolletal.2009, author = {Tippk{\"o}tter, Nils and St{\"u}ckmann, Henning and Kroll, Stephen and Winkelmann, Gunda and Noack, Udo and Scheper, Thomas and Ulber, Roland}, title = {A semi-quantitative dipstick assay for microcystin}, series = {Analytical and Bioanalytical Chemistry}, volume = {394}, journal = {Analytical and Bioanalytical Chemistry}, number = {3}, publisher = {springer}, address = {Berlin}, issn = {1618-2650}, doi = {10.1007/s00216-009-2750-8}, pages = {863 -- 869}, year = {2009}, abstract = {An immunochromatographic lateral flow dipstick assay for the fast detection of microcystin-LR was developed. Colloid gold particles with diameters of 40 nm were used as red-colored antibody labels for the visual detection of the antigen. The new dipstick sensor is capable of detecting down to 5 µg·l-1 (ppb; total inversion of the color signal) or 1 ppb (observation of color grading) of microcystin-LR. The course of the labeling reaction was observed via spectrometric wave shifts caused by the change of particle size during the binding of antibodies. Different stabilizing reagents showed that especially bovine serum albumin (BSA) and casein increase the assays sensitivity and the conjugate stability. Performance of the dipsticks was quantified by pattern processing of capture zone CCD images. Storage stability of dipsticks and conjugate suspensions over 115 days under different conditions were monitored. The ready-to-use dipsticks were successfully tested with microcystin-LR-spiked samples of outdoor drinking- and salt water and applied to the tissue of microcystin-fed mussels.}, language = {en} } @article{GaribaldiBegingCaneseetal.2017, author = {Garibaldi, F. and Beging, Stefan and Canese, R. and Carpinelli, G. and Clinthorne, N. and Colilli, S. and Cosentino, L. and Finocchiaro, P. and Giuliani, F. and Gricia, M. and Lucentini, M. and Majewski, S. and Monno, E. and Musico, P. and Santavenere, F. and T{\"o}dter, J. and Wegener, Hans-Peter and Ziemons, Karl}, title = {A novel TOF-PET MRI detector for diagnosis and follow up of the prostate cancer}, series = {European Physical Journal Plus}, volume = {132}, journal = {European Physical Journal Plus}, number = {9}, publisher = {Springer}, address = {Berlin}, issn = {2190-5444}, doi = {10.1140/epjp/i2017-11662-x}, year = {2017}, language = {en} } @article{FerreinSteinbauer2016, author = {Ferrein, Alexander and Steinbauer, Gerald}, title = {The Interplay of Aldebaran and RoboCup}, series = {KI - K{\"u}nstliche Intelligenz}, volume = {30}, journal = {KI - K{\"u}nstliche Intelligenz}, number = {3-4}, publisher = {Springer}, address = {Berlin}, issn = {1610-1987}, doi = {10.1007/s13218-016-0440-1}, pages = {325 -- 326}, year = {2016}, language = {en} } @article{SteinbauerFerrein2016, author = {Steinbauer, Gerald and Ferrein, Alexander}, title = {20 Years of RoboCup}, series = {KI - K{\"u}nstliche Intelligenz}, volume = {30}, journal = {KI - K{\"u}nstliche Intelligenz}, number = {3-4}, publisher = {Springer}, address = {Berlin}, issn = {1610-1987}, doi = {10.1007/s13218-016-0442-z}, pages = {221 -- 224}, year = {2016}, language = {en} } @article{FerreinSteinbauer2016, author = {Ferrein, Alexander and Steinbauer, Gerald}, title = {Looking back on 20 Years of RoboCup}, series = {KI - K{\"u}nstliche Intelligenz}, volume = {30}, journal = {KI - K{\"u}nstliche Intelligenz}, number = {3-4}, publisher = {Springer}, address = {Berlin}, issn = {1610-1987}, doi = {10.1007/s13218-016-0443-y}, pages = {321 -- 323}, year = {2016}, language = {en} } @incollection{NiemuellerZwillingLakemeyeretal.2017, author = {Niemueller, Tim and Zwilling, Frederik and Lakemeyer, Gerhard and L{\"o}bach, Matthias and Reuter, Sebastian and Jeschke, Sabina and Ferrein, Alexander}, title = {Cyber-Physical System Intelligence}, series = {Industrial Internet of Things}, booktitle = {Industrial Internet of Things}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-42559-7}, doi = {10.1007/978-3-319-42559-7_17}, pages = {447 -- 472}, year = {2017}, abstract = {Cyber-physical systems are ever more common in manufacturing industries. Increasing their autonomy has been declared an explicit goal, for example, as part of the Industry 4.0 vision. To achieve this system intelligence, principled and software-driven methods are required to analyze sensing data, make goal-directed decisions, and eventually execute and monitor chosen tasks. In this chapter, we present a number of knowledge-based approaches to these problems and case studies with in-depth evaluation results of several different implementations for groups of autonomous mobile robots performing in-house logistics in a smart factory. We focus on knowledge-based systems because besides providing expressive languages and capable reasoning techniques, they also allow for explaining how a particular sequence of actions came about, for example, in the case of a failure.}, language = {en} } @incollection{BhattaraiFrotscherStaat2018, author = {Bhattarai, Aroj and Frotscher, Ralf and Staat, Manfred}, title = {Computational Analysis of Pelvic Floor Dysfunction}, series = {Women's Health and Biomechanics}, booktitle = {Women's Health and Biomechanics}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-71574-2}, doi = {10.1007/978-3-319-71574-2_17}, pages = {217 -- 230}, year = {2018}, abstract = {Pelvic floor dysfunction (PFD) is characterized by the failure of the levator ani (LA) muscle to maintain the pelvic hiatus, resulting in the descent of the pelvic organs below the pubococcygeal line. This chapter adopts the modified Humphrey material model to consider the effect of the muscle fiber on passive stretching of the LA muscle. The deformation of the LA muscle subjected to intra-abdominal pressure during Valsalva maneuver is compared with the magnetic resonance imaging (MRI) examination of a nulliparous female. Numerical result shows that the fiber-based Humphrey model simulates the muscle behavior better than isotropic constitutive models. Greater posterior movement of the LA muscle widens the levator hiatus due to lack of support from the anococcygeal ligament and the perineal structure as a consequence of birth-related injury and aging. Old and multiparous females with uncontrolled urogenital and rectal hiatus tend to develop PFDs such as prolapse and incontinence.}, language = {en} } @article{KerpenBungValeroetal.2017, author = {Kerpen, Nils B. and Bung, Daniel B. and Valero, Daniel and Schlurmann, Torsten}, title = {Energy dissipation within the wave run-up at stepped revetments}, series = {Journal of Ocean University of China}, volume = {16}, journal = {Journal of Ocean University of China}, number = {4}, publisher = {Springer}, address = {Berlin}, issn = {1993-5021}, doi = {10.1007/s11802-017-3355-z}, pages = {649 -- 654}, year = {2017}, language = {en} }