@article{Dikta2017, author = {Dikta, Gerhard}, title = {Semi-parametric random censorship models}, series = {From Statistics to Mathematical Finance : Festschrift in Honour of Winfried Stute}, journal = {From Statistics to Mathematical Finance : Festschrift in Honour of Winfried Stute}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-319-50986-0}, doi = {10.1007/978-3-319-50986-0_3}, pages = {43 -- 56}, year = {2017}, language = {en} } @article{KunkelGebhardtMpofuetal.2018, author = {Kunkel, Maximilian Hugo and Gebhardt, Andreas and Mpofu, Khumbaulani and Kallweit, Stephan}, title = {Statistical assessment of mechanical properties of selective laser melted specimens of stainless steel}, series = {The International Journal of Advanced Manufacturing Technology}, volume = {98}, journal = {The International Journal of Advanced Manufacturing Technology}, number = {5-8}, publisher = {Springer}, address = {London}, issn = {0268-3768}, doi = {10.1007/s00170-018-2040-8}, pages = {1409 -- 1431}, year = {2018}, abstract = {The rail business is challenged by long product life cycles and a broad spectrum of assembly groups and single parts. When spare part obsolescence occurs, quick solutions are needed. A reproduction of obsolete parts is often connected to long waiting times and minimum lot quantities that need to be purchased and stored. Spare part storage is therefore challenged by growing stocks, bound capital and issues of part ageing. A possible solution could be a virtual storage of spare parts which will be 3D printed through additive manufacturing technologies in case of sudden demand. As mechanical properties of additive manufactured parts are neither guaranteed by machine manufacturers nor by service providers, the utilization of this relatively young technology is impeded and research is required to address these issues. This paper presents an examination of mechanical properties of specimens manufactured from stainless steel through the selective laser melting (SLM) process. The specimens were produced in multiple batches. This paper interrogates the question if the test results follow a normal distribution pattern and if mechanical property predictions can be made. The results will be put opposite existing threshold values provided as the industrial standard. Furthermore, probability predictions will be made in order to examine the potential of the SLM process to maintain state-of-the-art mechanical property requirements.}, language = {en} } @article{WilsonDickieSchreiteretal.2018, author = {Wilson, C. E. and Dickie, A. P. and Schreiter, K. and Wehr, R. and Wilson, E. M. and Bial, J. and Scheer, Nico and Wilson, I. D. and Riley, R. J.}, title = {The pharmacokinetics and metabolism of diclofenac in chimeric humanized and murinized FRG mice}, series = {Archives of Toxicology}, volume = {92}, journal = {Archives of Toxicology}, number = {6}, publisher = {Springer}, issn = {1432-0738}, doi = {10.1007/s00204-018-2212-1}, pages = {1953 -- 1967}, year = {2018}, abstract = {The pharmacokinetics of diclofenac were investigated following single oral doses of 10 mg/kg to chimeric liver humanized and murinized FRG and C57BL/6 mice. In addition, the metabolism and excretion were investigated in chimeric liver humanized and murinized FRG mice. Diclofenac reached maximum blood concentrations of 2.43 ± 0.9 µg/mL (n = 3) at 0.25 h post-dose with an AUCinf of 3.67 µg h/mL and an effective half-life of 0.86 h (n = 2). In the murinized animals, maximum blood concentrations were determined as 3.86 ± 2.31 µg/mL at 0.25 h post-dose with an AUCinf of 4.94 ± 2.93 µg h/mL and a half-life of 0.52 ± 0.03 h (n = 3). In C57BL/6J mice, mean peak blood concentrations of 2.31 ± 0.53 µg/mL were seen 0.25 h post-dose with a mean AUCinf of 2.10 ± 0.49 µg h/mL and a half-life of 0.51 ± 0.49 h (n = 3). Analysis of blood indicated only trace quantities of drug-related material in chimeric humanized and murinized FRG mice. Metabolic profiling of urine, bile and faecal extracts revealed a complex pattern of metabolites for both humanized and murinized animals with, in addition to unchanged parent drug, a variety of hydroxylated and conjugated metabolites detected. The profiles in humanized mice were different to those of both murinized and wild-type animals, e.g., a higher proportion of the dose was detected in the form of acyl glucuronide metabolites and much reduced amounts as taurine conjugates. Comparison of the metabolic profiles obtained from the present study with previously published data from C57BL/6J mice and humans revealed a greater, though not complete, match between chimeric humanized mice and humans, such that the liver humanized FRG model may represent a model for assessing the biotransformation of such compounds in humans.}, language = {en} } @incollection{FranzenSteckenPfaffetal.2019, author = {Franzen, Julian and Stecken, Jannis and Pfaff, Raphael and Kuhlenk{\"o}tter, Bernd}, title = {Using the Digital Shadow for a Prescriptive Optimization of Maintenance and Operation : The Locomotive in the Context of the Cyber-Physical System}, series = {Advances in Production, Logistics and Traffic}, booktitle = {Advances in Production, Logistics and Traffic}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-13535-5}, doi = {10.1007/978-3-030-13535-5_19}, pages = {265 -- 276}, year = {2019}, abstract = {In competition with other modes of transport, rail freight transport is looking for solutions to become more attractive. Short-term success can be achieved through the data-driven optimization of operations and maintenance as well as the application of novel strategies such as prescriptive maintenance. After introducing the concept of prescriptive maintenance, this paper aims to prove that vehicle-focused applications of this approach indeed have the potential to increase attractiveness. However, even greater advantages can be activated if data from the horizontal network of the vehicle is available. Drawing on the state of the art in research and technology in the field of cyber-physical systems (CPS) as well as digital twins and shadows, our work serves to design a system of systems for the horizontal interconnection of a rail vehicle and to conceptualize a draft for a digital twin of a locomotive.}, language = {en} } @incollection{BozakovSander2013, author = {Bozakov, Zdravko and Sander, Volker}, title = {OpenFlow: A Perspective for Building Versatile Networks}, series = {Network-Embedded Management and Applications}, booktitle = {Network-Embedded Management and Applications}, publisher = {Springer}, address = {New York, NY}, isbn = {978-1-4419-6769-5}, doi = {10.1007/978-1-4419-6769-5_11}, pages = {217 -- 245}, year = {2013}, language = {en} } @incollection{FateriGebhardt2020, author = {Fateri, Miranda and Gebhardt, Andreas}, title = {Introduction to Additive Manufacturing}, series = {3D Printing of Optical Components}, booktitle = {3D Printing of Optical Components}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-58960-8}, doi = {10.1007/978-3-030-58960-8_1}, pages = {1 -- 22}, year = {2020}, abstract = {Additive manufacturing (AM) works by creating objects layer by layer in a manner similar to a 2D printer with the "printed" layers stacked on top of each other. The layer-wise manufacturing nature of AM enables fabrication of freeform geometries which cannot be fabricated using conventional manufacturing methods as a one part. Depending on how each layer is created and bonded to the adjacent layers, different AM methods have been developed. In this chapter, the basic terms, common materials, and different methods of AM are described, and their potential applications are discussed.}, language = {en} } @incollection{GebhardtHoetter2019, author = {Gebhardt, Andreas and Hoetter, Jan-Steffen}, title = {Rapid Tooling}, series = {CIRP Encyclopedia of Production Engineering}, booktitle = {CIRP Encyclopedia of Production Engineering}, publisher = {Springer}, address = {Berlin, Heidelberg}, isbn = {978-3-662-53120-4}, doi = {10.1007/978-3-662-53120-4}, pages = {39 -- 52}, year = {2019}, language = {en} } @article{HugenrothBorchardtRitteretal.2021, author = {Hugenroth, Kristin and Borchardt, Ralf and Ritter, Philine and Groß‑Hardt, Sascha and Meyns, Bart and Verbelen, Tom and Steinseifer, Ulrich and Kaufmann, Tim A. S. and Engelmann, Ulrich M.}, title = {Optimizing cerebral perfusion and hemodynamics during cardiopulmonary bypass through cannula design combining in silico, in vitro and in vivo input}, series = {Scientific Reports}, volume = {11}, journal = {Scientific Reports}, number = {Art. No. 16800}, publisher = {Springer}, address = {Berlin}, issn = {2045-2322}, doi = {10.1038/s41598-021-96397-2}, pages = {1 -- 12}, year = {2021}, abstract = {Cardiopulmonary bypass (CPB) is a standard technique for cardiac surgery, but comes with the risk of severe neurological complications (e.g. stroke) caused by embolisms and/or reduced cerebral perfusion. We report on an aortic cannula prototype design (optiCAN) with helical outflow and jet-splitting dispersion tip that could reduce the risk of embolic events and restores cerebral perfusion to 97.5\% of physiological flow during CPB in vivo, whereas a commercial curved-tip cannula yields 74.6\%. In further in vitro comparison, pressure loss and hemolysis parameters of optiCAN remain unaffected. Results are reproducibly confirmed in silico for an exemplary human aortic anatomy via computational fluid dynamics (CFD) simulations. Based on CFD simulations, we firstly show that optiCAN design improves aortic root washout, which reduces the risk of thromboembolism. Secondly, we identify regions of the aortic intima with increased risk of plaque release by correlating areas of enhanced plaque growth and high wall shear stresses (WSS). From this we propose another easy-to-manufacture cannula design (opti2CAN) that decreases areas burdened by high WSS, while preserving physiological cerebral flow and favorable hemodynamics. With this novel cannula design, we propose a cannulation option to reduce neurological complications and the prevalence of stroke in high-risk patients after CPB.}, language = {en} } @inproceedings{SchuhGottschalkHoehneetal.2008, author = {Schuh, G{\"u}nther and Gottschalk, Sebastian and H{\"o}hne, Tim and Attig, Philipp}, title = {Further Potentials of Smart Logistics}, series = {Manufacturing Systems and Technologies for the New Frontier}, booktitle = {Manufacturing Systems and Technologies for the New Frontier}, editor = {Mitsuishi, M.}, publisher = {Springer}, address = {London}, isbn = {978-1-84800-267-8}, doi = {10.1007/978-1-84800-267-8_18}, pages = {93 -- 96}, year = {2008}, language = {en} } @article{RauppSchmittWalzetal.2018, author = {Raupp, Sebastian M. and Schmitt, Marcel and Walz, Anna-Lena and Diehm, Ralf and Hummel, Helga and Scharfer, Philip and Schabel, Wilhelm}, title = {Slot die stripe coating of low viscous fluids}, series = {Journal of Coatings Technology and Research}, volume = {15}, journal = {Journal of Coatings Technology and Research}, number = {5}, publisher = {Springer}, issn = {1935-3804}, doi = {10.1007/s11998-017-0039-y}, pages = {899 -- 911}, year = {2018}, abstract = {Slot die coating is applied to deposit thin and homogenous films in roll-to-roll and sheet-to-sheet applications. The critical step in operation is to choose suitable process parameters within the process window. In this work, we investigate an upper limit for stripe coatings. This maximum film thickness is characterized by stripe merging which needs to be avoided in a stable process. It is shown that the upper limit reduces the process window for stripe coatings to a major extent. As a result, stripe coatings at large coating gaps and low viscosities are only possible for relatively thick films. Explaining the upper limit, a theory of balancing the side pressure in the gap region in the cross-web direction has been developed.}, language = {en} }