@article{WiesenTippkoetterMuffleretal.2015, author = {Wiesen, Sebastian and Tippk{\"o}tter, Nils and Muffler, Kai and Suck, Kirstin and Sohling, Ulrich and Ruf, Friedrich and Ulber, Roland}, title = {Adsorption of fatty acids to layered double hydroxides in aqueous systems}, series = {Adsorption}, volume = {21}, journal = {Adsorption}, number = {6-7}, publisher = {Springer}, address = {Berlin}, pages = {459 -- 466}, year = {2015}, abstract = {Due to their anion exchange characteristics, layered double hydroxides (LDHs) are suitable for the detoxification of aqueous, fatty acid containing fermentation substrates. The aim of this study is to examine the adsorption mechanism, using crude glycerol from plant oil esterification as a model system. Changes in the intercalation structure in relation to the amount of fatty acids adsorbed are monitored by X-ray diffraction and infra-red spectroscopy. Additionally, calcination of LDH is investigated in order to increase the binding capacity for fatty acids. Our data propose that, at ambient temperature, fatty acids can be bound to the hydrotalcite by adsorption or in addition by intercalation, depending on fatty acid concentration. The adsorption of fatty acids from crude glycerol shows a BET-like behavior. Above a fatty acid concentration of 3.5 g L-1, intercalation of fatty acids can be shown by the appearance of an increased interlayer spacing. This observation suggests a two phase adsorption process. Calcination of LDHs allows increasing the binding capacity for fatty acids by more than six times, mainly by reduction of structural CO32-.}, language = {en} } @incollection{MufflerTippkoetterUlber2010, author = {Muffler, Kai and Tippk{\"o}tter, Nils and Ulber, Roland}, title = {Chemical feedstocks and fine chemicals from other substrates}, series = {Handbook of hydrocarbon and lipid microbiology. Volume 4: Consequences of microbial interactions with hydrocarbons, oils and lipids. - (Springer reference)}, booktitle = {Handbook of hydrocarbon and lipid microbiology. Volume 4: Consequences of microbial interactions with hydrocarbons, oils and lipids. - (Springer reference)}, editor = {Timmis, Kenneth N.}, publisher = {Springer}, address = {Berlin [u.a.]}, isbn = {978-3-540-77588-1}, doi = {10.1007\%2F978-3-540-77587-4_214}, pages = {2891 -- 2902}, year = {2010}, language = {en} } @article{TippkoetterStueckmannKrolletal.2009, author = {Tippk{\"o}tter, Nils and St{\"u}ckmann, Henning and Kroll, Stephen and Winkelmann, Gunda and Noack, Udo and Scheper, Thomas and Ulber, Roland}, title = {A semi-quantitative dipstick assay for microcystin}, series = {Analytical and Bioanalytical Chemistry}, volume = {394}, journal = {Analytical and Bioanalytical Chemistry}, number = {3}, publisher = {springer}, address = {Berlin}, issn = {1618-2650}, doi = {10.1007/s00216-009-2750-8}, pages = {863 -- 869}, year = {2009}, abstract = {An immunochromatographic lateral flow dipstick assay for the fast detection of microcystin-LR was developed. Colloid gold particles with diameters of 40 nm were used as red-colored antibody labels for the visual detection of the antigen. The new dipstick sensor is capable of detecting down to 5 µg·l-1 (ppb; total inversion of the color signal) or 1 ppb (observation of color grading) of microcystin-LR. The course of the labeling reaction was observed via spectrometric wave shifts caused by the change of particle size during the binding of antibodies. Different stabilizing reagents showed that especially bovine serum albumin (BSA) and casein increase the assays sensitivity and the conjugate stability. Performance of the dipsticks was quantified by pattern processing of capture zone CCD images. Storage stability of dipsticks and conjugate suspensions over 115 days under different conditions were monitored. The ready-to-use dipsticks were successfully tested with microcystin-LR-spiked samples of outdoor drinking- and salt water and applied to the tissue of microcystin-fed mussels.}, language = {en} }