@incollection{DuongSeifarthTemizArtmannetal.2018, author = {Duong, Minh Tuan and Seifarth, Volker and Temiz Artmann, Ayseg{\"u}l and Artmann, Gerhard and Staat, Manfred}, title = {Growth Modelling Promoting Mechanical Stimulation of Smooth Muscle Cells of Porcine Tubular Organs in a Fibrin-PVDF Scaffold}, series = {Biological, Physical and Technical Basics of Cell Engineering}, booktitle = {Biological, Physical and Technical Basics of Cell Engineering}, editor = {Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l and Zhubanova, Azhar A. and Digel, Ilya}, publisher = {Springer}, address = {Singapore}, isbn = {978-981-10-7904-7}, doi = {10.1007/978-981-10-7904-7_9}, pages = {209 -- 232}, year = {2018}, abstract = {Reconstructive surgery and tissue replacements like ureters or bladders reconstruction have been recently studied, taking into account growth and remodelling of cells since living cells are capable of growing, adapting, remodelling or degrading and restoring in order to deform and respond to stimuli. Hence, shapes of ureters or bladders and their microstructure change during growth and these changes strongly depend on external stimuli such as training. We present the mechanical stimulation of smooth muscle cells in a tubular fibrin-PVDFA scaffold and the modelling of the growth of tissue by stimuli. To this end, mechanotransduction was performed with a kyphoplasty balloon catheter that was guided through the lumen of the tubular structure. The bursting pressure was examined to compare the stability of the incubated tissue constructs. The results showed the significant changes on tissues with training by increasing the burst pressure as a characteristic mechanical property and the smooth muscle cells were more oriented with uniformly higher density. Besides, the computational growth models also exhibited the accurate tendencies of growth of the cells under different external stimuli. Such models may lead to design standards for the better layered tissue structure in reconstructing of tubular organs characterized as composite materials such as intestines, ureters and arteries.}, language = {en} } @incollection{FrotscherStaat2018, author = {Frotscher, Ralf and Staat, Manfred}, title = {Towards Patient-Specific Computational Modeling of hiPS-Derived Cardiomyocyte Function and Drug Action}, series = {Biological, Physical and Technical Basics of Cell Engineering}, booktitle = {Biological, Physical and Technical Basics of Cell Engineering}, editor = {Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l and Zhubanova, Azhar A. and Digel, Ilya}, publisher = {Springer}, address = {Singapore}, isbn = {978-981-10-7904-7}, doi = {10.1007/978-981-10-7904-7_10}, pages = {233 -- 250}, year = {2018}, abstract = {Human-induced pluripotent stem cell-derived cardiomyocytes (hiPS-CM) today are widely used for the investigation of normal electromechanical cardiac function, of cardiac medication and of mutations. Computational models are thus established that simulate the behavior of this kind of cells. This section first motivates the modeling of hiPS-CM and then presents and discusses several modeling approaches of microscopic and macroscopic constituents of human-induced pluripotent stem cell-derived and mature human cardiac tissue. The focus is led on the mapping of the computational results one can achieve with these models onto mature human cardiomyocyte models, the latter being the real matter of interest. Model adaptivity is the key feature that is discussed because it opens the way for modeling various biological effects like biological variability, medication, mutation and phenotypical expression. We compare the computational with experimental results with respect to normal cardiac function and with respect to inotropic and chronotropic drug effects. The section closes with a discussion on the status quo of the specificity of computational models and on what challenges have to be solved to reach patient-specificity.}, language = {en} } @incollection{DigelAkimbekovKistaubayevaetal.2018, author = {Digel, Ilya and Akimbekov, Nuraly Sh. and Kistaubayeva, Aida and Zhubanova, Azhar A.}, title = {Microbial Sampling from Dry Surfaces: Current Challenges and Solutions}, series = {Biological, Physical and Technical Basics of Cell Engineering}, booktitle = {Biological, Physical and Technical Basics of Cell Engineering}, editor = {Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l and Zhubanova, Azhar A. and Digel, Ilya}, publisher = {Springer}, address = {Singapore}, isbn = {978-981-10-7904-7}, doi = {10.1007/978-981-10-7904-7_19}, pages = {421 -- 456}, year = {2018}, abstract = {Sampling of dry surfaces for microorganisms is a main component of microbiological safety and is of critical importance in many fields including epidemiology, astrobiology as well as numerous branches of medical and food manufacturing. Aspects of biofilm formation, analysis and removal in aqueous solutions have been thoroughly discussed in literature. In contrast, microbial communities on air-exposed (dry) surfaces have received significantly less attention. Diverse surface sampling methods have been developed in order to address various surfaces and microbial groups, but they notoriously show poor repeatability, low recovery rates and suffer from lack of mutual consistency. Quantitative sampling for viable microorganisms represents a particular challenge, especially on porous and irregular surfaces. Therefore, it is essential to examine in depth the factors involved in microorganisms' recovery efficiency and accuracy depending on the sampling technique used. Microbial colonization, retention and community composition on different dry surfaces are very complex and rely on numerous physicochemical and biological factors. This study is devoted to analyze and review the (a) physical phenomena and intermolecular forces relevant for microbiological surface sampling; (b) challenges and problems faced by existing sampling methods for viable microorganisms and (c) current directions of engineering and research aimed at improvement of quality and efficiency of microbiological surface sampling.}, language = {en} } @incollection{DachwaldOhndorf2019, author = {Dachwald, Bernd and Ohndorf, Andreas}, title = {Global optimization of continuous-thrust trajectories using evolutionary neurocontrol}, series = {Modeling and Optimization in Space Engineering}, booktitle = {Modeling and Optimization in Space Engineering}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-10501-3}, doi = {10.1007/978-3-030-10501-3_2}, pages = {33 -- 57}, year = {2019}, abstract = {Searching optimal continuous-thrust trajectories is usually a difficult and time-consuming task. The solution quality of traditional optimal-control methods depends strongly on an adequate initial guess because the solution is typically close to the initial guess, which may be far from the (unknown) global optimum. Evolutionary neurocontrol attacks continuous-thrust optimization problems from the perspective of artificial intelligence and machine learning, combining artificial neural networks and evolutionary algorithms. This chapter describes the method and shows some example results for single- and multi-phase continuous-thrust trajectory optimization problems to assess its performance. Evolutionary neurocontrol can explore the trajectory search space more exhaustively than a human expert can do with traditional optimal-control methods. Especially for difficult problems, it usually finds solutions that are closer to the global optimum. Another fundamental advantage is that continuous-thrust trajectories can be optimized without an initial guess and without expert supervision.}, language = {en} } @article{DachwaldUlamecPostbergetal.2020, author = {Dachwald, Bernd and Ulamec, Stephan and Postberg, Frank and Sohl, Frank and Vera, Jean-Pierre de and Christoph, Waldmann and Lorenz, Ralph D. and Hellard, Hugo and Biele, Jens and Rettberg, Petra}, title = {Key technologies and instrumentation for subsurface exploration of ocean worlds}, series = {Space Science Reviews}, volume = {216}, journal = {Space Science Reviews}, number = {Art. 83}, publisher = {Springer}, address = {Dordrecht}, issn = {1572-9672}, doi = {10.1007/s11214-020-00707-5}, pages = {45}, year = {2020}, abstract = {In this chapter, the key technologies and the instrumentation required for the subsurface exploration of ocean worlds are discussed. The focus is laid on Jupiter's moon Europa and Saturn's moon Enceladus because they have the highest potential for such missions in the near future. The exploration of their oceans requires landing on the surface, penetrating the thick ice shell with an ice-penetrating probe, and probably diving with an underwater vehicle through dozens of kilometers of water to the ocean floor, to have the chance to find life, if it exists. Technologically, such missions are extremely challenging. The required key technologies include power generation, communications, pressure resistance, radiation hardness, corrosion protection, navigation, miniaturization, autonomy, and sterilization and cleaning. Simpler mission concepts involve impactors and penetrators or - in the case of Enceladus - plume-fly-through missions.}, language = {en} } @incollection{Kotliar2021, author = {Kotliar, Konstantin}, title = {Ocular rigidity: clinical approach}, series = {Ocular Rigidity, Biomechanics and Hydrodynamics of the Eye}, booktitle = {Ocular Rigidity, Biomechanics and Hydrodynamics of the Eye}, editor = {Pallikaris, I. and Tsilimbaris, M. K. and Dastiridou, A. I.}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-64422-2}, doi = {10.1007/978-3-030-64422-2_2}, pages = {15 -- 43}, year = {2021}, abstract = {The term ocular rigidity is widely used in clinical ophthalmology. Generally it is assumed as a resistance of the whole eyeball to mechanical deformation and relates to biomechanical properties of the eye and its tissues. Basic principles and formulas for clinical tonometry, tonography and pulsatile ocular blood flow measurements are based on the concept of ocular rigidity. There is evidence for altered ocular rigidity in aging, in several eye diseases and after eye surgery. Unfortunately, there is no consensual view on ocular rigidity: it used to make a quite different sense for different people but still the same name. Foremost there is no clear consent between biomechanical engineers and ophthalmologists on the concept. Moreover ocular rigidity is occasionally characterized using various parameters with their different physical dimensions. In contrast to engineering approach, clinical approach to ocular rigidity claims to characterize the total mechanical response of the eyeball to its deformation without any detailed considerations on eye morphology or material properties of its tissues. Further to the previous chapter this section aims to describe clinical approach to ocular rigidity from the perspective of an engineer in an attempt to straighten out this concept, to show its advantages, disadvantages and various applications.}, language = {en} } @article{KuertenKotliarFuestetal.2021, author = {Kuerten, David and Kotliar, Konstantin and Fuest, Matthias and Walter, Peter and Hollstein, Muriel and Plange, Niklas}, title = {Does hemispheric vascular regulation differ significantly in glaucoma patients with altitudinal visual field asymmetry? A single-center, prospective study}, series = {International Ophthalmology}, volume = {41}, journal = {International Ophthalmology}, number = {41}, editor = {Neri, Piergiorgio}, publisher = {Springer}, address = {Berlin}, isbn = {1573-2630}, doi = {10.1007/s10792-021-01876-0}, pages = {3109 -- 3119}, year = {2021}, abstract = {Purpose Vascular risk factors and ocular perfusion are heatedly discussed in the pathogenesis of glaucoma. The retinal vessel analyzer (RVA, IMEDOS Systems, Germany) allows noninvasive measurement of retinal vessel regulation. Significant differences especially in the veins between healthy subjects and patients suffering from glaucoma were previously reported. In this pilot-study we investigated if localized vascular regulation is altered in glaucoma patients with altitudinal visual field defect asymmetry. Methods 15 eyes of 12 glaucoma patients with advanced altitudinal visual field defect asymmetry were included. The mean defect was calculated for each hemisphere separately (-20.99 ± 10.49 pro- found hemispheric visual field defect vs -7.36 ± 3.97 dB less profound hemisphere). After pupil dilation, RVA measurements of retinal arteries and veins were conducted using the standard protocol. The superior and inferior retinal vessel reactivity were measured consecutively in each eye. Results Significant differences were recorded in venous vessel constriction after flicker light stimulation and overall amplitude of the reaction (p \ 0.04 and p \ 0.02 respectively) in-between the hemispheres spheres. Vessel reaction was higher in the hemisphere corresponding to the more advanced visual field defect. Arterial diameters reacted similarly, failing to reach statistical significance. Conclusion Localized retinal vessel regulation is significantly altered in glaucoma patients with asymmetri altitudinal visual field defects. Veins supplying the hemisphere concordant to a less profound visual field defect show diminished diameter changes. Vascular dysregulation might be particularly important in early glaucoma stages prior to a significant visual field defect.}, language = {en} } @article{LenzKahmannBehbahanietal.2022, author = {Lenz, Maximilian and Kahmann, Stephanie Lucina and Behbahani, Mehdi and Pennig, Lenhard and Hackl, Michael and Leschinger, Tim and M{\"u}ller, Lars Peter and Wegmann, Kilian}, title = {Influence of rotator cuff preload on fracture configuration in proximal humerus fractures: a proof of concept for fracture simulation}, series = {Archives of Orthopaedic and Trauma Surgery}, journal = {Archives of Orthopaedic and Trauma Surgery}, publisher = {Springer}, address = {Berlin, Heidelberg}, issn = {1434-3916}, doi = {10.1007/s00402-022-04471-9}, year = {2022}, abstract = {Introduction In regard of surgical training, the reproducible simulation of life-like proximal humerus fractures in human cadaveric specimens is desirable. The aim of the present study was to develop a technique that allows simulation of realistic proximal humerus fractures and to analyse the influence of rotator cuff preload on the generated lesions in regards of fracture configuration. Materials and methods Ten cadaveric specimens (6 left, 4 right) were fractured using a custom-made drop-test bench, in two groups. Five specimens were fractured without rotator cuff preload, while the other five were fractured with the tendons of the rotator cuff preloaded with 2 kg each. The humeral shaft and the shortened scapula were potted. The humerus was positioned at 90° of abduction and 10° of internal rotation to simulate a fall on the elevated arm. In two specimens of each group, the emergence of the fractures was documented with high-speed video imaging. Pre-fracture radiographs were taken to evaluate the deltoid-tuberosity index as a measure of bone density. Post-fracture X-rays and CT scans were performed to define the exact fracture configurations. Neer's classification was used to analyse the fractures. Results In all ten cadaveric specimens life-like proximal humerus fractures were achieved. Two III-part and three IV-part fractures resulted in each group. The preloading of the rotator cuff muscles had no further influence on the fracture configuration. High-speed videos of the fracture simulation revealed identical fracture mechanisms for both groups. We observed a two-step fracture mechanism, with initial impaction of the head segment against the glenoid followed by fracturing of the head and the tuberosities and then with further impaction of the shaft against the acromion, which lead to separation of the tuberosities. Conclusion A high energetic axial impulse can reliably induce realistic proximal humerus fractures in cadaveric specimens. The preload of the rotator cuff muscles had no influence on initial fracture configuration. Therefore, fracture simulation in the proximal humerus is less elaborate. Using the presented technique, pre-fractured specimens are available for real-life surgical education.}, language = {en} } @article{QuittmannAbelAlbrachtetal.2020, author = {Quittmann, Oliver J. and Abel, Thomas and Albracht, Kirsten and Meskemper, Joshua and Foitschik, Tina and Str{\"u}der, Heiko K.}, title = {Biomechanics of handcycling propulsion in a 30-min continuous load test at lactate threshold: Kinetics, kinematics, and muscular activity in able-bodied participants}, series = {European Journal of Applied Physiology}, journal = {European Journal of Applied Physiology}, number = {120}, publisher = {Springer}, address = {Heidelberg}, issn = {1439-6327}, doi = {10.1007/s00421-020-04373-x}, pages = {1403 -- 1415}, year = {2020}, abstract = {Purpose This study aims to investigate the biomechanics of handcycling during a continuous load trial (CLT) to assess the mechanisms underlying fatigue in upper body exercise. Methods Twelve able-bodied triathletes performed a 30-min CLT at a power output corresponding to lactate threshold in a racing recumbent handcycle mounted on a stationary ergometer. During the CLT, ratings of perceived exertion (RPE), tangential crank kinetics, 3D joint kinematics, and muscular activity of ten muscles of the upper extremity and trunk were examined using motion capturing and surface electromyography. Results During the CLT, spontaneously chosen cadence and RPE increased, whereas crank torque decreased. Rotational work was higher during the pull phase. Peripheral RPE was higher compared to central RPE. Joint range of motion decreased for elbow-flexion and radial-duction. Integrated EMG (iEMG) increased in the forearm flexors, forearm extensors, and M. deltoideus (Pars spinalis). An earlier onset of activation was found for M. deltoideus (Pars clavicularis), M. pectoralis major, M. rectus abdominis, M. biceps brachii, and the forearm flexors. Conclusion Fatigue-related alterations seem to apply analogously in handcycling and cycling. The most distal muscles are responsible for force transmission on the cranks and might thus suffer most from neuromuscular fatigue. The findings indicate that peripheral fatigue (at similar lactate values) is higher in handcycling compared to leg cycling, at least for inexperienced participants. An increase in cadence might delay peripheral fatigue by a reduced vascular occlusion. We assume that the gap between peripheral and central fatigue can be reduced by sport-specific endurance training.}, language = {en} } @incollection{AkimbekovDigelSherelkhanetal.2022, author = {Akimbekov, Nuraly S. and Digel, Ilya and Sherelkhan, Dinara K. and Razzaque, Mohammed S.}, title = {Vitamin D and Phosphate Interactions in Health and Disease}, series = {Phosphate Metabolism}, booktitle = {Phosphate Metabolism}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-91621-3}, doi = {10.1007/978-3-030-91623-7_5}, pages = {37 -- 46}, year = {2022}, abstract = {Vitamin D plays an essential role in calcium and inorganic phosphate (Pi) homeostasis, maintaining their optimal levels to assure adequate bone mineralization. Vitamin D, as calcitriol (1,25(OH)2D), not only increases intestinal calcium and phosphate absorption but also facilitates their renal reabsorption, leading to elevated serum calcium and phosphate levels. The interaction of 1,25(OH)2D with its receptor (VDR) increases the efficiency of intestinal absorption of calcium to 30-40\% and phosphate to nearly 80\%. Serum phosphate levels can also influence 1,25 (OH)2D and fibroblast growth factor 23 (FGF23) levels, i.e., higher phosphate concentrations suppress vitamin D activation and stimulate parathyroid hormone (PTH) release, while a high FGF23 serum level leads to reduced vitamin D synthesis. In the vitamin D-deficient state, the intestinal calcium absorption decreases and the secretion of PTH increases, which in turn causes the stimulation of 1,25(OH)2D production, resulting in excessive urinary phosphate loss. Maintenance of phosphate homeostasis is essential as hyperphosphatemia is a risk factor of cardiovascular calcification, chronic kidney diseases (CKD), and premature aging, while hypophosphatemia is usually associated with rickets and osteomalacia. This chapter elaborates on the possible interactions between vitamin D and phosphate in health and disease.}, language = {en} } @incollection{DachwaldUlamecKowalskietal.2023, author = {Dachwald, Bernd and Ulamec, Stephan and Kowalski, Julia and Boxberg, Marc S. and Baader, Fabian and Biele, Jens and K{\"o}mle, Norbert}, title = {Ice melting probes}, series = {Handbook of Space Resources}, booktitle = {Handbook of Space Resources}, editor = {Badescu, Viorel and Zacny, Kris and Bar-Cohen, Yoseph}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-97912-6 (Print)}, doi = {10.1007/978-3-030-97913-3_29}, pages = {955 -- 996}, year = {2023}, abstract = {The exploration of icy environments in the solar system, such as the poles of Mars and the icy moons (a.k.a. ocean worlds), is a key aspect for understanding their astrobiological potential as well as for extraterrestrial resource inspection. On these worlds, ice melting probes are considered to be well suited for the robotic clean execution of such missions. In this chapter, we describe ice melting probes and their applications, the physics of ice melting and how the melting behavior can be modeled and simulated numerically, the challenges for ice melting, and the required key technologies to deal with those challenges. We also give an overview of existing ice melting probes and report some results and lessons learned from laboratory and field tests.}, language = {en} } @article{WiescherKotliarNeuhannetal.2010, author = {Wiescher, A. and Kotliar, Konstantin and Neuhann, T. and Lanzl, Ines M.}, title = {Rasch progrediente Visusminderung beider Augen bei einem jungen Patienten}, series = {Der Ophthalmologe}, volume = {105}, journal = {Der Ophthalmologe}, number = {4}, publisher = {Springer}, address = {Berlin}, issn = {1433-0423}, doi = {10.1007/s00347-007-1586-x}, pages = {389 -- 392}, year = {2010}, abstract = {Ein 34-j{\"a}hriger m{\"a}nnlicher Patient stellte sich zur Abkl{\"a}rung einer seit dem 9. Lebensjahr bestehenden und im letzten Jahr rasch progredienten Visusminderung beider Augen bei uns vor. Er beschrieb eine subjektiv zunehmende, im Spiegel f{\"u}r ihn selbst sichtbare, weißliche Tr{\"u}bung in der Pupille beidseits und eine starke Blendempfindlichkeit. Nebenbefundlich gab er rezidivierende Konjunktivitiden und morgens verklebte Lider an. Eine Allergie auf Gr{\"a}serpollen und eine Unvertr{\"a}glichkeit auf Alkohol sowie mehrere Lebensmittel seien ebenfalls bekannt. Zus{\"a}tzlich leidet der Patient an stark ausgepr{\"a}gtem atopischem Ekzem. Dieses wurde nie systemisch, sondern nur bei Bedarf mit kortisonhaltiger Salbe therapiert.}, language = {de} } @article{LanzlSeidovaErbenetal.2010, author = {Lanzl, Ines M. and Seidova, Seid-Fatima and Erben, A. and Th{\"u}rmel, K. and Kotliar, Konstantin}, title = {Diffuse stromale Hornhauttr{\"u}bungen und Ver{\"a}nderungen der H{\"a}nde}, series = {Der Ophthalmologe}, volume = {107}, journal = {Der Ophthalmologe}, number = {4}, publisher = {Springer}, address = {Berlin}, issn = {1433-0423}, doi = {10.1007/s00347-009-2066-2}, pages = {363 -- 365}, year = {2010}, abstract = {Bilaterale stromale Hornhauttr{\"u}bungen sind f{\"u}r den Augenarzt eine differenzialdiagnostische Herausforderung. Im folgenden Beitrag werden 2 Patieninnen (30 und 36 Jahre) mit unterschiedlich stark ausgepr{\"a}gter stromaler diffuser Hornhauttr{\"u}bung vorgestellt. Patientin 1 war kleinw{\"u}chsig (114 cm) und Patientin 2 normal groß (172 cm). Beide Patientinnen wiesen ver{\"a}nderte Gelenkstrukturen an Hand und Fußgelenken sowie diffuse stromale Hornhauttr{\"u}bungen auf. Des Weiteren lagen eine Mitral- und Aorteninsuffizienz (Patientin 1) bzw. eine Aorteninsuffizienz (Patientin 2) vor. Die stromalen diffusen Hornhauttr{\"u}bungen ließen im Zusammenhang mit den Gelenkver{\"a}nderungen ein Scheie-Syndrom vermuten. Therapeutisch ist bei Patienten mit Visusminderung eine (lamell{\"a}re) Keratoplastik sinnvoll.}, language = {de} }