@article{EichlerBalcBremenetal.2024, author = {Eichler, Fabian and Balc, Nicolae and Bremen, Sebastian and Nink, Philipp}, title = {Investigation of laser powder bed fusion parameters with respect to their influence on the thermal conductivity of 316L samples}, series = {Journal of Manufacturing and Materials Processing}, volume = {8}, journal = {Journal of Manufacturing and Materials Processing}, number = {4}, publisher = {MDPI}, address = {Basel}, issn = {2504-4494}, doi = {10.3390/jmmp8040166}, pages = {12 Seiten}, year = {2024}, abstract = {The thermal conductivity of components manufactured using Laser Powder Bed Fusion (LPBF), also called Selective Laser Melting (SLM), plays an important role in their processing. Not only does a reduced thermal conductivity cause residual stresses during the process, but it also makes subsequent processes such as the welding of LPBF components more difficult. This article uses 316L stainless steel samples to investigate whether and to what extent the thermal conductivity of specimens can be influenced by different LPBF parameters. To this end, samples are set up using different parameters, orientations, and powder conditions and measured by a heat flow meter using stationary analysis. The heat flow meter set-up used in this study achieves good reproducibility and high measurement accuracy, so that comparative measurements between the various LPBF influencing factors to be tested are possible. In summary, the series of measurements show that the residual porosity of the components has the greatest influence on conductivity. The degradation of the powder due to increased recycling also appears to be detectable. The build-up direction shows no detectable effect in the measurement series.}, language = {en} } @article{VahidpourAlghazaliAkcaetal.2022, author = {Vahidpour, Farnoosh and Alghazali, Yousef H. M. and Akca, Sevilay and Hommes, Gregor and Sch{\"o}ning, Michael Josef}, title = {An Enzyme-Based Interdigitated Electrode-Type Biosensor for Detecting Low Concentrations of H₂O₂ Vapor/Aerosol}, series = {Chemosensors}, volume = {10}, journal = {Chemosensors}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {2227-9040}, doi = {10.3390/chemosensors10060202}, pages = {Arikel 202}, year = {2022}, abstract = {This work introduces a novel method for the detection of H₂O₂ vapor/aerosol of low concentrations, which is mainly applied in the sterilization of equipment in medical industry. Interdigitated electrode (IDE) structures have been fabricated by means of microfabrication techniques. A differential setup of IDEs was prepared, containing an active sensor element (active IDE) and a passive sensor element (passive IDE), where the former was immobilized with an enzymatic membrane of horseradish peroxidase that is selective towards H₂O₂. Changes in the IDEs' capacitance values (active sensor element versus passive sensor element) under H₂O₂ vapor/aerosol atmosphere proved the detection in the concentration range up to 630 ppm with a fast response time (<60 s). The influence of relative humidity was also tested with regard to the sensor signal, showing no cross-sensitivity. The repeatability assessment of the IDE biosensors confirmed their stable capacitive signal in eight subsequent cycles of exposure to H₂O₂ vapor/aerosol. Room-temperature detection of H₂O₂ vapor/aerosol with such miniaturized biosensors will allow a future three-dimensional, flexible mapping of aseptic chambers and help to evaluate sterilization assurance in medical industry.}, language = {en} } @article{RaffeisAdjeiKyeremehVroomenetal.2020, author = {Raffeis, Iris and Adjei-Kyeremeh, Frank and Vroomen, Uwe and Westhoff, Elmar and Bremen, Sebastian and Hohoi, Alexandru and B{\"u}hrig-Polaczek, Andreas}, title = {Qualification of a Ni-Cu alloy for the laser powder bed fusion process (LPBF): Its microstructure and mechanical properties}, series = {Applied Sciences}, volume = {10}, journal = {Applied Sciences}, number = {Art. 3401}, publisher = {MDPI}, address = {Basel}, issn = {2076-3417}, doi = {10.3390/app10103401}, pages = {1 -- 15}, year = {2020}, abstract = {As researchers continue to seek the expansion of the material base for additive manufacturing, there is a need to focus attention on the Ni-Cu group of alloys which conventionally has wide industrial applications. In this work, the G-NiCu30Nb casting alloy, a variant of the Monel family of alloys with Nb and high Si content is, for the first time, processed via the laser powder bed fusion process (LPBF). Being novel to the LPBF processes, optimum LPBF parameters were determined, and hardness and tensile tests were performed in as-built conditions and after heat treatment at 1000 °C. Microstructures of the as-cast and the as-built condition were compared. Highly dense samples (99.8\% density) were achieved after varying hatch distance (80 µm and 140 µm) with scanning speed (550 mm/s-1500 mm/s). There was no significant difference in microhardness between varied hatch distance print sets. Microhardness of the as-built condition (247 HV0.2) exceeded the as-cast microhardness (179 HV0.2.). Tensile specimens built in vertical (V) and horizontal (H) orientations revealed degrees of anisotropy and were superior to conventionally reported figures. Post heat treatment increased ductility from 20\% to 31\% (V), as well as from 16\% to 25\% (H), while ultimate tensile strength (UTS) and yield strength (YS) were considerably reduced.}, language = {en} }