@article{FalkenbergKohnBottetal.2023, author = {Falkenberg, Fabian and Kohn, Sophie and Bott, Michael and Bongaerts, Johannes and Siegert, Petra}, title = {Biochemical characterisation of a novel broad pH spectrum subtilisin from Fictibacillus arsenicus DSM 15822ᵀ}, series = {FEBS Open Bio}, volume = {13}, journal = {FEBS Open Bio}, number = {11}, publisher = {Wiley}, address = {Hoboken, NJ}, issn = {2211-5463}, doi = {10.1002/2211-5463.13701}, pages = {2035 -- 2046}, year = {2023}, abstract = {Subtilisins from microbial sources, especially from the Bacillaceae family, are of particular interest for biotechnological applications and serve the currently growing enzyme market as efficient and novel biocatalysts. Biotechnological applications include use in detergents, cosmetics, leather processing, wastewater treatment and pharmaceuticals. To identify a possible candidate for the enzyme market, here we cloned the gene of the subtilisin SPFA from Fictibacillus arsenicus DSM 15822ᵀ (obtained through a data mining-based search) and expressed it in Bacillus subtilis DB104. After production and purification, the protease showed a molecular mass of 27.57 kDa and a pI of 5.8. SPFA displayed hydrolytic activity at a temperature optimum of 80 °C and a very broad pH optimum between 8.5 and 11.5, with high activity up to pH 12.5. SPFA displayed no NaCl dependence but a high NaCl tolerance, with decreasing activity up to concentrations of 5 m NaCl. The stability enhanced with increasing NaCl concentration. Based on its substrate preference for 10 synthetic peptide 4-nitroanilide substrates with three or four amino acids and its phylogenetic classification, SPFA can be assigned to the subgroup of true subtilisins. Moreover, SPFA exhibited high tolerance to 5\% (w/v) SDS and 5\% H₂O₂ (v/v). The biochemical properties of SPFA, especially its tolerance of remarkably high pH, SDS and H₂O₂, suggest it has potential for biotechnological applications.}, language = {en} } @article{HaegerProbstJaegeretal.2023, author = {Haeger, Gerrit and Probst, Johanna and Jaeger, Karl-Erich and Bongaerts, Johannes and Siegert, Petra}, title = {Novel aminoacylases from Streptomyces griseus DSM 40236 and their recombinant production in Streptomyces lividans}, series = {FEBS Open Bio}, volume = {13}, journal = {FEBS Open Bio}, number = {12}, publisher = {Wiley}, address = {Hoboken, NJ}, issn = {2211-5463}, doi = {10.1002/2211-5463.13723}, pages = {2224 -- 2238}, year = {2023}, abstract = {Amino acid-based surfactants are valuable compounds for cosmetic formulations. The chemical synthesis of acyl-amino acids is conventionally performed by the Schotten-Baumann reaction using fatty acyl chlorides, but aminoacylases have also been investigated for use in biocatalytic synthesis with free fatty acids. Aminoacylases and their properties are diverse; they belong to different peptidase families and show differences in substrate specificity and biocatalytic potential. Bacterial aminoacylases capable of synthesis have been isolated from Burkholderia, Mycolicibacterium, and Streptomyces. Although several proteases and peptidases from S. griseus have been described, no aminoacylases from this species have been identified yet. In this study, we investigated two novel enzymes produced by S. griseus DSM 40236ᵀ . We identified and cloned the respective genes and recombinantly expressed an α-aminoacylase (EC 3.5.1.14), designated SgAA, and an ε-lysine acylase (EC 3.5.1.17), designated SgELA, in S. lividans TK23. The purified aminoacylase SgAA was biochemically characterized, focusing on its hydrolytic activity to determine temperature- and pH optima and stabilities. The aminoacylase could hydrolyze various acetyl-amino acids at the Nα -position with a broad specificity regarding the sidechain. Substrates with longer acyl chains, like lauroyl-amino acids, were hydrolyzed to a lesser extent. Purified aminoacylase SgELA specific for the hydrolysis of Nε -acetyl-L-lysine was unstable and lost its enzymatic activity upon storage for a longer period but could initially be characterized. The pH optimum of SgELA was pH 8.0. While synthesis of acyl-amino acids was not observed with SgELA, SgAA catalyzed the synthesis of lauroyl-methionine.}, language = {en} } @article{FalkenbergRahbaFischeretal.2022, author = {Falkenberg, Fabian and Rahba, Jade and Fischer, David and Bott, Michael and Bongaerts, Johannes and Siegert, Petra}, title = {Biochemical characterization of a novel oxidatively stable, halotolerant, and high-alkaline subtilisin from Alkalihalobacillus okhensis Kh10-101T}, series = {FEBS Open Bio}, volume = {12}, journal = {FEBS Open Bio}, number = {10}, publisher = {Wiley}, address = {Hoboken, NJ}, issn = {2211-5463}, doi = {10.1002/2211-5463.13457}, pages = {1729 -- 1746}, year = {2022}, abstract = {Halophilic and halotolerant microorganisms represent a promising source of salt-tolerant enzymes suitable for various biotechnological applications where high salt concentrations would otherwise limit enzymatic activity. Considering the current growing enzyme market and the need for more efficient and new biocatalysts, the present study aimed at the characterization of a high-alkaline subtilisin from Alkalihalobacillus okhensis Kh10-101T. The protease gene was cloned and expressed in Bacillus subtilis DB104. The recombinant protease SPAO with 269 amino acids belongs to the subfamily of high-alkaline subtilisins. The biochemical characteristics of purified SPAO were analyzed in comparison with subtilisin Carlsberg, Savinase, and BPN'. SPAO, a monomer with a molecular mass of 27.1 kDa, was active over a wide range of pH 6.0-12.0 and temperature 20-80 °C, optimally at pH 9.0-9.5 and 55 °C. The protease is highly oxidatively stable to hydrogen peroxide and retained 58\% of residual activity when incubated at 10 °C with 5\% (v/v) H2O2 for 1 h while stimulated at 1\% (v/v) H2O2. Furthermore, SPAO was very stable and active at NaCl concentrations up to 5.0 m. This study demonstrates the potential of SPAO for biotechnological applications in the future.}, language = {en} } @article{IkenBronderGoretzkietal.2019, author = {Iken, Heiko and Bronder, Thomas and Goretzki, Alexander and Kriesel, Jana and Ahlborn, Kristina and Gerlach, Frank and Vonau, Winfried and Zander, Willi and Schubert, J{\"u}rgen and Sch{\"o}ning, Michael Josef}, title = {Development of a Combined pH- and Redox-Sensitive Bi-Electrode Glass Thin-Film Sensor}, series = {physica status solidi a : applications and materials sciences}, volume = {216}, journal = {physica status solidi a : applications and materials sciences}, number = {12}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201900114}, pages = {1 -- 8}, year = {2019}, language = {en} } @article{MoraisSilvaDantasetal.2019, author = {Morais, Paulo V. and Silva, Anielle C. A. and Dantas, Noelio O. and Sch{\"o}ning, Michael Josef and Siqueira, Jos{\´e} R., Jr.}, title = {Hybrid Layer-by-Layer Film of Polyelectrolytes-Embedded Catalytic CoFe2O4 Nanocrystals as Sensing Units in Capacitive Electrolyte-Insulator-Semiconductor Devices}, series = {physica status solidi a : applications and materials sciences}, volume = {216}, journal = {physica status solidi a : applications and materials sciences}, number = {1900044}, publisher = {Wiley}, address = {Weinheim}, doi = {10.1002/pssa.201900044}, pages = {1 -- 9}, year = {2019}, language = {en} } @article{SchiffelsSelmer2019, author = {Schiffels, Johannes and Selmer, Thorsten}, title = {Combinatorial assembly of ferredoxin-linked modules in Escherichia coli yields a testing platform for Rnf-complexes}, series = {Biotechnology and Bioengineering}, journal = {Biotechnology and Bioengineering}, number = {accepted article}, publisher = {Wiley}, address = {Weinheim}, doi = {10.1002/bit.27079}, pages = {1 -- 36}, year = {2019}, language = {en} } @article{OezsoyluKizildagSchoeningetal.2019, author = {{\"O}zsoylu, Dua and Kizildag, Sefa and Sch{\"o}ning, Michael Josef and Wagner, Torsten}, title = {Effect of plasma treatment on the sensor properties of a light-addressable potentiometric sensor (LAPS)}, series = {physica status solidi a : applications and materials sciences}, volume = {216}, journal = {physica status solidi a : applications and materials sciences}, number = {20}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201900259}, pages = {8 Seiten}, year = {2019}, abstract = {A light-addressable potentiometric sensor (LAPS) is a field-effect-based (bio-) chemical sensor, in which a desired sensing area on the sensor surface can be defined by illumination. Light addressability can be used to visualize the concentration and spatial distribution of the target molecules, e.g., H+ ions. This unique feature has great potential for the label-free imaging of the metabolic activity of living organisms. The cultivation of those organisms needs specially tailored surface properties of the sensor. O2 plasma treatment is an attractive and promising tool for rapid surface engineering. However, the potential impacts of the technique are carefully investigated for the sensors that suffer from plasma-induced damage. Herein, a LAPS with a Ta2O5 pH-sensitive surface is successfully patterned by plasma treatment, and its effects are investigated by contact angle and scanning LAPS measurements. The plasma duration of 30 s (30 W) is found to be the threshold value, where excessive wettability begins. Furthermore, this treatment approach causes moderate plasma-induced damage, which can be reduced by thermal annealing (10 min at 300 °C). These findings provide a useful guideline to support future studies, where the LAPS surface is desired to be more hydrophilic by O2 plasma treatment.}, language = {en} } @article{MolinnusPoghossianKeusgenetal.2017, author = {Molinnus, Denise and Poghossian, Arshak and Keusgen, Michael and Katz, Evgeny and Sch{\"o}ning, Michael Josef}, title = {Coupling of Biomolecular Logic Gates with Electronic Transducers: From Single Enzyme Logic Gates to Sense/Act/Treat Chips}, series = {Electroanalysis}, volume = {29}, journal = {Electroanalysis}, number = {8}, publisher = {Wiley}, address = {Weinheim}, issn = {1521-4109}, doi = {10.1002/elan.201700208}, pages = {1840 -- 1849}, year = {2017}, abstract = {The integration of biomolecular logic principles with electronic transducers allows designing novel digital biosensors with direct electrical output, logically triggered drug-release, and closed-loop sense/act/treat systems. This opens new opportunities for advanced personalized medicine in the context of theranostics. In the present work, we will discuss selected examples of recent developments in the field of interfacing enzyme logic gates with electrodes and semiconductor field-effect devices. Special attention is given to an enzyme OR/Reset logic gate based on a capacitive field-effect electrolyte-insulator-semiconductor sensor modified with a multi-enzyme membrane. Further examples are a digital adrenaline biosensor based on an AND logic gate with binary YES/NO output and an integrated closed-loop sense/act/treat system comprising an amperometric glucose sensor, a hydrogel actuator, and an insulin (drug) sensor.}, language = {en} } @article{OberlaenderBrommWendeleretal.2015, author = {Oberl{\"a}nder, Jan and Bromm, Alexander and Wendeler, Luisa and Iken, Heiko and Palomar Duran, Marlena and Greeff, Anton and Kirchner, Patrick and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Towards a biosensor to monitor the sterilisation efficiency of aseptic filling machines}, series = {Physica status solidi (a)}, volume = {212}, journal = {Physica status solidi (a)}, number = {6}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201431900}, pages = {1299 -- 1305}, year = {2015}, abstract = {Sterilisation processes are compulsory in medicine, pharmacy, and food industries to prevent infections of consumers and microbiological contaminations of products. Monitoring the sterilisation by conventional microbiological methods is time- and lab-consuming. To overcome this problem, in this work a novel biosensor has been proposed. The sensor enables a fast method to evaluate sterilisation processes. By means of thin-film technology the sensor's transducer structures in form of IDEs (interdigitated electrodes) have been fabricated on a silicon substrate. Physical characterisation of the developed sensor was done by AFM, SEM, and profilometry. Impedance analyses were conducted for the electrical characterisation. As microbiological layer spores of B. atrophaeus have been immobilised on the sensing structure; spores of this type are a well-known sterilisation test organism. Impedance measurements at a fixed frequency over time were performed to monitor the immobilisation process. A sterilisation process according to aseptic filling machines was applied to demonstrate the sensor functionality. After both, immobilisation and sterilisation, a change in impedance could successfully be detected.}, language = {en} } @article{JildehWagnerSchoeningetal.2015, author = {Jildeh, Zaid B. and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Pieper, Martin}, title = {Simulating the electromagnetic-thermal treatment of thin aluminium layers for adhesion improvement}, series = {Physica status solidi (a)}, volume = {Vol. 212}, journal = {Physica status solidi (a)}, number = {6}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201431893}, pages = {1234 -- 1241}, year = {2015}, abstract = {A composite layer material used in packaging industry is made from joining layers of different materials using an adhesive. An important processing step in the production of aluminium-containing composites is the surface treatment and consequent coating of adhesive material on the aluminium surface. To increase adhesion strength between aluminium layer and the adhesive material, the foil is heat treated. For efficient heating, induction heating was considered as state-of-the-art treatment process. Due to the complexity of the heating process and the unpredictable nature of the heating source, the control of the process is not yet optimised. In this work, a finite element analysis of the process was established and various process parameters were studied. The process was simplified and modelled in 3D. The numerical model contains an air domain, an aluminium layer and a copper coil fitted with a magnetic field concentrating material. The effect of changing the speed of the aluminium foil (or rolling speed) was studied with the change of the coil current. Statistical analysis was used for generating a general control equation of coil current with changing rolling speed.}, language = {en} }