@article{CiritsisHorbachStaatetal.2018, author = {Ciritsis, Alexander and Horbach, Andreas and Staat, Manfred and Kuhl, Christiane K. and Kraemer, Nils Andreas}, title = {Porosity and tissue integration of elastic mesh implants evaluated in vitro and in vivo}, series = {Journal of Biomedical Materials Research: Part B: Applied Biomaterials}, volume = {106}, journal = {Journal of Biomedical Materials Research: Part B: Applied Biomaterials}, number = {2}, publisher = {Wiley}, address = {New York, NY}, issn = {1552-4981}, doi = {10.1002/jbm.b.33877}, pages = {827 -- 833}, year = {2018}, abstract = {Purpose In vivo, a loss of mesh porosity triggers scar tissue formation and restricts functionality. The purpose of this study was to evaluate the properties and configuration changes as mesh deformation and mesh shrinkage of a soft mesh implant compared with a conventional stiff mesh implant in vitro and in a porcine model. Material and Methods Tensile tests and digital image correlation were used to determine the textile porosity for both mesh types in vitro. A group of three pigs each were treated with magnetic resonance imaging (MRI) visible conventional stiff polyvinylidene fluoride meshes (PVDF) or with soft thermoplastic polyurethane meshes (TPU) (FEG Textiltechnik mbH, Aachen, Germany), respectively. MRI was performed with a pneumoperitoneum at a pressure of 0 and 15 mmHg, which resulted in bulging of the abdomen. The mesh-induced signal voids were semiautomatically segmented and the mesh areas were determined. With the deformations assessed in both mesh types at both pressure conditions, the porosity change of the meshes after 8 weeks of ingrowth was calculated as an indicator of preserved elastic properties. The explanted specimens were examined histologically for the maturity of the scar (collagen I/III ratio). Results In TPU, the in vitro porosity increased constantly, in PVDF, a loss of porosity was observed under mild stresses. In vivo, the mean mesh areas of TPU were 206.8 cm2 (± 5.7 cm2) at 0 mmHg pneumoperitoneum and 274.6 cm2 (± 5.2 cm2) at 15 mmHg; for PVDF the mean areas were 205.5 cm2 (± 8.8 cm2) and 221.5 cm2 (± 11.8 cm2), respectively. The pneumoperitoneum-induced pressure increase resulted in a calculated porosity increase of 8.4\% for TPU and of 1.2\% for PVDF. The mean collagen I/III ratio was 8.7 (± 0.5) for TPU and 4.7 (± 0.7) for PVDF. Conclusion The elastic properties of TPU mesh implants result in improved tissue integration compared to conventional PVDF meshes, and they adapt more efficiently to the abdominal wall. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 827-833, 2018.}, language = {en} } @article{KotliarHanssenEberhardtetal.2013, author = {Kotliar, Konstantin and Hanssen, Henner and Eberhardt, Karla and Vilser, Walthard and Schmaderer, Christoph and Halle, Martin and Heemann, Uwe and Baumann, M.}, title = {Retinal pulse wave velocity in young male normotensive and mildly hypertensive subjects}, series = {Microcirculation}, journal = {Microcirculation}, publisher = {Wiley}, address = {Malden}, issn = {1549-8719}, year = {2013}, language = {en} } @article{JiminezGermanBehbahaniMiettinenetal.2013, author = {Jiminez German, Salvador and Behbahani, Mehdi and Miettinen, Susanna and Grijpma, Dirk W. and Haimi, Suvi P.}, title = {Proliferation and differentiation of adipose stem cells towards smooth muscle cells on poly(trimethylene carbonate) membranes}, series = {Macromolecular symposia}, volume = {Vol. 334}, journal = {Macromolecular symposia}, number = {Iss. 1}, publisher = {Wiley}, address = {Weinheim}, issn = {0258-0322}, pages = {133 -- 142}, year = {2013}, language = {en} } @article{StaatTrenzLohmannetal.2012, author = {Staat, Manfred and Trenz, Eva and Lohmann, Philipp and Frotscher, Ralf and Klinge, Uwe and Tabaza, Ruth and Kirschner-Hermanns, Ruth}, title = {New measurements to compare soft tissue anchoring systems in pelvic floor surgery}, series = {Journal of Biomedical Materials Research Part B: Applied Biomaterials}, volume = {100B}, journal = {Journal of Biomedical Materials Research Part B: Applied Biomaterials}, number = {4}, publisher = {Wiley}, address = {Hoboken, NJ}, issn = {1552-4981}, doi = {10.1002/jbm.b.32654}, pages = {924 -- 933}, year = {2012}, abstract = {Suburethral slings as well as different meshes are widely used treating stress urinary incontinence and prolaps in women. With the development of MiniSlings and special meshes using less alloplastic material anchorage systems become more important to keep devices in place and to put some tension especially on the MiniSlings. To date, there are many different systems of MiniSlings of different companies on the market which differ in the structure of the used meshes and anchors. A new objective measurement method to compare different properties of MiniSling systems (mesh and anchor) is presented in this article. Ballistic gelatine acts as soft tissue surrogate. Significant differences in parameters like pull-out strength of anchors or shrinkage of meshes under loading conditions have been determined. The form and size of the anchors as well as the structural stability of the meshes are decisive for a proper integration. The tested anchorings sytems showed markedly different mechanical function at their respective load bearing capacity. As the stable fixation of the device in tissue is a prerequisite for a permanet reinforcement, the proposed test system permits further optimisation of anchor and mesh devices to improve the success of the surgical treatment}, language = {en} } @article{LanzlSeidovaMaieretal.2011, author = {Lanzl, Ines M. and Seidova, Seid-Fatima and Maier, Mathias and Schmidt-Trucks{\"a}ss, Arno and Halle, Martin and Kotliar, Konstantin}, title = {Dynamic retinal vessel response to flicker in age-related macular degeneration patients before and after vascular endothelial growth factor inhibitor injection}, series = {Acta Ophthalmologica}, volume = {89}, journal = {Acta Ophthalmologica}, number = {5}, publisher = {Wiley}, address = {Weinheim}, isbn = {1755-3768}, pages = {472 -- 479}, year = {2011}, language = {en} } @article{NguyenXuanRabczukNguyenThoietal.2011, author = {Nguyen-Xuan, H. and Rabczuk, T. and Nguyen-Thoi, T. and Tran, Thanh Ngoc and Nguyen-Thanh, N.}, title = {Computation of limit and shakedown loads using a node-based smoothed finite element method}, series = {International Journal for Numerical Methods in Engineering}, volume = {90}, journal = {International Journal for Numerical Methods in Engineering}, number = {3}, publisher = {Wiley}, address = {Weinheim}, issn = {1097-0207}, doi = {10.1002/nme.3317}, pages = {287 -- 310}, year = {2011}, abstract = {This paper presents a novel numerical procedure for computing limit and shakedown loads of structures using a node-based smoothed FEM in combination with a primal-dual algorithm. An associated primal-dual form based on the von Mises yield criterion is adopted. The primal-dual algorithm together with a Newton-like iteration are then used to solve this associated primal-dual form to determine simultaneously both approximate upper and quasi-lower bounds of the plastic collapse limit and the shakedown limit. The present formulation uses only linear approximations and its implementation into finite element programs is quite simple. Several numerical examples are given to show the reliability, accuracy, and generality of the present formulation compared with other available methods.}, language = {en} } @incollection{Dachwald2010, author = {Dachwald, Bernd}, title = {Solar sail dynamics and control}, series = {Encyclopedia of Aerospace Engineering}, booktitle = {Encyclopedia of Aerospace Engineering}, publisher = {Wiley}, address = {Hoboken}, doi = {10.1002/9780470686652.eae292}, year = {2010}, abstract = {Solar sails are large and lightweight reflective structures that are propelled by solar radiation pressure. This chapter covers their orbital and attitude dynamics and control. First, the advantages and limitations of solar sails are discussed and their history and development status is outlined. Because the dynamics of solar sails is governed by the (thermo-)optical properties of the sail film, the basic solar radiation pressure force models have to be described and compared before parameters to measure solar sail performance can be defined. The next part covers the orbital dynamics of solar sails for heliocentric motion, planetocentric motion, and motion at Lagrangian equilibrium points. Afterwards, some advanced solar radiation pressure force models are described, which allow to quantify the thrust force on solar sails of arbitrary shape, the effects of temperature, of light incidence angle, of surface roughness, and the effects of optical degradation of the sail film in the space environment. The orbital motion of a solar sail is strongly coupled to its rotational motion, so that the attitude control of these soft and flexible structures is very challenging, especially for planetocentric orbits that require fast attitude maneuvers. Finally, some potential attitude control methods are sketched and selection criteria are given.}, language = {en} } @article{KotliarKharoubiSchmidtTrucksaessetal.2009, author = {Kotliar, Konstantin and Kharoubi, A. and Schmidt-Trucks{\"a}ß, A. and Halle, M. and Lanzl, I.}, title = {Does internal longitudinal microstructure of retinal veins change with age in medically healthy persons?}, series = {Acta Ophthalmologica}, volume = {Vol. 87}, journal = {Acta Ophthalmologica}, number = {Suppl. S244}, publisher = {Wiley}, address = {Weinheim}, issn = {1600-0420 (E-Journal); 1755-3768 (E-Journal); 0001-639X (Print); 1395-3907 (Print); 1755-375X (Print)}, pages = {0}, year = {2009}, language = {en} } @article{KurulganDemirciLinderDemircietal.2009, author = {Kurulgan Demirci, Eylem and Linder, Peter and Demirci, Taylan and Trzewik, J{\"u}rgen and Digel, Ilya and Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l}, title = {Contractile tension of endothelial cells: An LPS based in-vitro sepsis model}, series = {IUBMB Life. 61 (2009), H. 3}, journal = {IUBMB Life. 61 (2009), H. 3}, publisher = {Wiley}, address = {Weinheim}, isbn = {1521-6543}, pages = {307 -- 308}, year = {2009}, language = {en} }